计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 211100119-6.doi: 10.11896/jsjkx.211100119
韦入铭1, 陈若愚1, 李晗1, 刘旭红1,2
WEI Ru-ming1, CHEN Ruo-yu1, LI Han1, LIU Xu-hong1,2
摘要: 传统的技术趋势分析工作需要由经验丰富的从业者完成,涉及到大量的文献调研和分析,工作耗时耗力。针对上述问题,提出一种基于深度学习与文本计量的技术趋势分析模型,设计基于BERT_BiLSTM_CRF模型的领域文献命名实体识别算法,优化BERT的掩码机制。以集成电路领域的新闻和论文为数据集,开展BiLSTM_CRF、BERT_BiGRU_CRF等模型以及文中所提BERT_BiLSTM_CRF*模型的对比研究,研究命名实体识别技术在集成电路等领域的数据识别效果。相比于其他算法,文章所提的领域文献命名实体识别算法在F1值上达到了88.6%,奠定了技术趋势分析的基础。基于知识图谱易表达关联关系的特点,创新性提出知识图谱与文本计量技术结合的方法,并从不同角度以可视化的形式展示技术趋势分析效果,最终辅助从业者开展技术趋势智能分析工作。
中图分类号:
[1]WANG C Y.Analysis on the development trend of anti-virus technology [N].Network World,2005-12-12(035). [2]GUPTA R,PAL S K.Trend Analysis and Forecasting of COVID-19 outbreak in India[J].MedRxiv,2020. [3]LI S W.Analysis of the hot spots and development trend ofcommunication technology in the era of big data[J].Information Recording Materials,2021,22(7):62-64. [4]GRISHMAN R,SUNDHEIM B.Message Understanding Conference 6:A Brief History[C]//Proceedings of the 16th International Conference on Computational Linguistics.1996. [5]ZHAO S,LIU T,ZHAO S,et al.A neural multi-task learning framework to jointly model medical named entity recognition and normalization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:817-824. [6]XUEZHEN Y I N,HUI Z,JUNBAO Z,et al.Multi-neural network collaboration for Chinese military named entity recognition[J].Journal of Tsinghua University(Science and Technology),2020,60(8):648-655. [7]XIE R,LIU Z,JIA J,et al.Representation Learning of Knowledge Graphs with Entity Descriptions[C]//Thirtieth AAAI Conference on Artificial lntelligence.2016. [8]LAFFERTY J,MCCALLUM A,PEREIRA F C N.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence data[C]//Proceedings of the 18th International Conference on Machine Learning 2001(ICML 2001).2001:282-289. [9]ZHAO S,CAI Z,CHEN H,et al.Adversarial training based lattice LSTM for Chinese clinical named entity recognition[J].Journal of Biomedical Informatics,2019,99:103290. [10]WU F,LIU J,WU C,et al.Neural Chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[C]//The World Wide Web Conference.2019:3342-3348. [11]GAO X,LI Q.Named entity recognition in material field based on Bert-BILSTM-Attention-CRF[C]//2021 IEEE Conference on Telecommunications,Optics and Computer Science(TOCS).IEEE,2021:955-958. [12]GUO Z X,DENG X L.The entity intelligent identification method of legal cases based on BERT-BiLSTM-CRF[J].Journal of Beijing University of Posts and Telecommunications,2021,44(4):129-134. [13]GU Y.Research on Complex Chinese Named Entity Recognition Based onBiLSTM-CRF [D].Nanjing:Nanjing University,2019. [14]HU H,DENG S,LU H,et al.A Comparative Study on the Classification Performance of Machine Learning Models for AcademicFull Texts[C]//International Conference on Information.Cham:Springer,2020:713-737. [15]TIAN LX.Summary of Research on Knowledge Graph[J].Software,2020,41(4):67-71. [16]LIU S H,LIU X H,LIU X L,et al.Extraction of coal mine safety accident ontology concept based on word vector and conditional random field[J].Coal Technology,2018,37(9):178-181. [17]GOLDBERG Y,LEVY O.word2vec Explained:deriving Miko-lov et al.’s negative-sampling word-embedding method[J].ar-Xiv:1402.3722,2014. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 吴子仪, 李邵梅, 姜梦函, 张建朋. 基于自注意力模型的本体对齐方法 Ontology Alignment Method Based on Self-attention 计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190 |
[4] | 孔世明, 冯永, 张嘉云. 融合知识图谱的多层次传承影响力计算与泛化研究 Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph 计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144 |
[5] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[6] | 王杰, 李晓楠, 李冠宇. 基于自适应注意力机制的知识图谱补全算法 Adaptive Attention-based Knowledge Graph Completion 计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129 |
[7] | 马瑞新, 李泽阳, 陈志奎, 赵亮. 知识图谱推理研究综述 Review of Reasoning on Knowledge Graph 计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122 |
[8] | 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓. 一种可快速迁移的领域知识图谱构建方法 Fast and Transmissible Domain Knowledge Graph Construction Method 计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018 |
[9] | 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥. 军事指控保障领域命名实体识别语料库的构建 Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support 计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132 |
[10] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[11] | 钟将, 尹红, 张剑. 基于学术知识图谱的辅助创新技术研究 Academic Knowledge Graph-based Research for Auxiliary Innovation Technology 计算机科学, 2022, 49(5): 194-199. https://doi.org/10.11896/jsjkx.210400195 |
[12] | 朱敏, 梁朝晖, 姚林, 王翔坤, 曹梦琦. 学术引用信息可视化方法综述 Survey of Visualization Methods on Academic Citation Information 计算机科学, 2022, 49(4): 88-99. https://doi.org/10.11896/jsjkx.210300219 |
[13] | 梁静茹, 鄂海红, 宋美娜. 基于属性图模型的领域知识图谱构建方法 Method of Domain Knowledge Graph Construction Based on Property Graph Model 计算机科学, 2022, 49(2): 174-181. https://doi.org/10.11896/jsjkx.210500076 |
[14] | 韩啸, 章哲庆, 严丽. 基于关系数据库的时态RDF建模 Temporal RDF Modeling Based on Relational Database 计算机科学, 2022, 49(11): 90-97. https://doi.org/10.11896/jsjkx.211100065 |
[15] | 邓亮, 曹存根. 一种专利知识图谱的构建方法 Methods of Patent Knowledge Graph Construction 计算机科学, 2022, 49(11): 185-196. https://doi.org/10.11896/jsjkx.211100063 |
|