计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 211100090-6.doi: 10.11896/jsjkx.211100090

• 图像处理&多媒体技术 • 上一篇    下一篇

融合ViT卷积神经网络的木板表面缺陷识别

郭文龙, 刘芳华, 吴万毅, 李冲, 肖鹏, 刘朝   

  1. 江苏科技大学机械工程学院 江苏 镇江 212100
  • 出版日期:2022-11-10 发布日期:2022-11-21
  • 通讯作者: 刘芳华(cylfhua@163.com)
  • 作者简介:(2725006267@qq.com)
  • 基金资助:
    国家自然科学基金青年科学基金(51905228)

Wood Surface Defect Recognition Based on ViT Convolutional Neural Network

GUO Wen-long, LIU Fang-hua, WU Wan-yi, LI Chong, XIAO Peng, LIU Chao   

  1. School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang,Jiangsu 212100,China
  • Online:2022-11-10 Published:2022-11-21
  • About author:GUO Wen-long,born in 1997,postgra-duate,is a student member of China Computer Federation.His main research interests include wood floor sorting system and so on.
    LIU Fang-hua,born in 1972,Ph.D,professor.Her main research interests include multi-body dynamics,robot,etc.
  • Supported by:
    Young Scientists Fund of the National Natural Science Foundation of China(51905228).

摘要: 由于需要通过木板表面缺陷对木板分级,而人工检测存在一定问题。为解决木板表面缺陷识别问题,提出一种融合ViT的卷积神经网络模型,用于提高缺陷识别的准确率。为此,收集裂缝、虫眼、节子和纹理4种木板表面缺陷图片,其中裂缝和虫眼图片数量远少于节子和纹理。为解决模型训练时样本不均衡问题,利用ProGAN对裂缝和虫眼图片进行训练并生成同类型缺陷图片,以增加其数量,使4种图片数量保持平衡,并在实验前对缺陷图片进行数据增强并添加椒盐噪声,整理得到所需图片数据集。基于融合ViT的卷积神经网络模型,利用数据集验证两种不同激活函数的模型,结果表明使用GELU作为激活函数的模型性能更高。并测试不同的transformer深度时模型的性能,得到的模型缺陷识别的最高准确率可达到98.54%。实验结果表明,融合ViT的卷积神经网络模型是可行的,为木板表面缺陷自动检测提供了新思路。

关键词: 木板表面缺陷, ProGAN, ViT, 卷积神经网络, 深度学习

Abstract: There are some problems in manual detection because it is necessary to grade the wood board through its surface defects.In order to solve the problem of wood surface defect recognition,a convolution neural network model integrating ViT is proposed to improve the accuracy of defect recognition.For this purpose,four kinds of wood surface defect pictures of crack,wormhole,knot and texture are collected,in which the number of crack and wormhole pictures is far less than that of knot and texture.In order to solve the problem of sample imbalance in model training,ProGAN is used to train crack and wormhole pictures and generate pictures of the same type of defects,so as to increase their number and keep the number of four kinds of pictures balanced.Before the experiment,the data of defect images are enhanced and salt and pepper noise is added to sort out the required image data set.Based on the convolutional neural network model fused with ViT,two models with different activation functions are tested by using the data set.It is found that the model using GELU as the activation function has higher perfor-mance.The model performance at different transformer depths is tested,and the highest accuracy of model defect identification can reach 98.54%.Experiments show that the convolutional neural network model fused with ViT is feasible,which provides a new idea for the automatic detection of wood surface defects.

Key words: Wood surface defects, ProGAN, ViT, Convolutional neural network, Deep learning

中图分类号: 

  • TP391
[1]LI H,WU J N,YUAN W Q,et al.Research on real-time wood classification method based on visual significance [J].Journal of Instrumentation,2018,39(12):237-244.
[2]RAHIDDIN R N N,HASHIM U R,ISMAIL N H,et al.Classification of wood defect images using local binary pattern variants[J].International Journal of Advances in Intelligent Informa-tics,2020,6(1):36-45.
[3]CAVALIN P,OLIVEIRA L S,KOERICH A L,et al.Wood defect detection using grayscale images and an optimized feature set[C]//IECON 2006-32nd Annual Conference on IEEE Industrial Electronics.IEEE,2006:3408-3412.
[4]RUZ G A,ESTEVEZ P A,PEREZ C A.A neurofuzzy color image segmentation method for wood surface defect detection[J].Forest Products Journal,2005,55(4):52-58.
[5]HU J F,ZHAO Y F,CAO J.wood surface defect image segmentation algorithm based on super-pixel [J].Journal of Northeast Forestry University,2015,43(10):97-102
[6]LI S L,YUAN W Q,YANG J Y,et al.Wood defect classification based on local binary difference incentive model [J].Journal of Instrumentation,2019,40(6):68-77.
[7]KARRAS T,AILA T,LAINE S,et al.Progressive growing of gans for improved quality,stability,and variation[J].arXiv:1710.10196,2017.
[8]HENDRYCKS D,GIMPEL K.Gaussian error linear units(gelus)[J].arXiv:1606.08415,2016.
[9]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations.2015.
[10]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An ima-ge is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020.
[11]HAN B,ZENG S W.Plant leaf recognition based on multi feature fusion and convolution neural network [J].Computer Science,2021,48(S1):113-117
[12]XU Y G,ZHONG M,WU Z Z,et al.Texture cloth defect detection method based on deep learning [J/OL].Automation Report:1-16.[2021-11-05].https://doi.org/10.16383/j.aas.c200148.
[13]LIU X T,WANG W,LI Z Y,et al.Recognition algorithm of red and white blood cells in urine based on Improved BP neural network [J].Computer Science,2020,47(2):102-105.
[14]DING F,ZHUANG Z,LIU Y,et al.Detecting defects on solid wood panels based on an improved SSD algorithm[J].Sensors,2020,20(18):5315.
[15]GAO M,CHEN J,MU H,et al.A Transfer Residual Neural Network Based on ResNet-34 for Detection of Wood Knot Defects[J].Forests,2021,12(2):212.
[16]PAN S,FAN S,WONG S W K,et al.Ellipse detection and loca-lization with applications to knots in sawn lumber images[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:3892-3901.
[17]CHEN H,WANG Y,GUO T,et al.Pre-trained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:12299-12310.
[18]HUANG Y,QIU C,WANG X,et al.A compact convolutional neural network for surface defect inspection[J].Sensors,2020,20(7):1974.
[19]JABO S.Machine vision for wood defect detection and classification[D].Gothenburg,Sweden:Department of Signal and Systems Chalmers University of Technology,2011.
[20]KHAN S,NASEER M,HAYAT M,et al.Transformers in vision:A survey[J].arXiv:2101.01169,2021.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[3] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[4] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[5] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[6] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[9] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[10] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[11] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[12] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[13] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!