计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 140-143.doi: 10.11896/jsjkx.210300238

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于数据学习的结构静力学性能预测方法

赵航1, 童水光1, 朱郑州2   

  1. 1 浙江大学机械工程学院 杭州 310027;
    2 北京大学软件与微电子学院 北京 102600
  • 收稿日期:2021-03-23 修回日期:2021-09-09 发布日期:2022-04-01
  • 通讯作者: 朱郑州(zhuzz@ss.pku.edu.cn)
  • 作者简介:(zhaoyihang@zju.edu.cn)
  • 基金资助:
    浙江省重点研发计划(2019C01057)

Prediction Method of Structural Static Performance Based on Data Learning

ZHAO Hang1, TONG Shui-guang1, ZHU Zheng-zhou2   

  1. 1 School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2 School of Software & Microelectronics, Peking University, Beijing 102600, China;
  • Received:2021-03-23 Revised:2021-09-09 Published:2022-04-01
  • About author:ZHAO Hang,born in 1994,postgra-duate.His main research interests include optimization of mechanical structure and data learning.ZHU Zheng-zhou, born in 1979,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include personalized recommendation in the big data environment and educational big data.
  • Supported by:
    This work was supported by the Zhejiang Province Key R&D Program(2019C01057).

摘要: 针对目前机械结构优化中建立预测模型代价较高的问题,提出了一种基于数据学习的结构静力学性能预测方法。以悬臂梁为研究对象,建立有限元仿真模型以获取位移场数据,构建边界条件-位移场代理模型,预测结果表明位移场分布趋势与实际一致,载荷为1000N和1600N时最大位移相对误差分别为-0.02%和-0.47%。文中讨论了均布力大小和集中力作用位置对位移场预测结果的影响,结果表明,随着载荷幅值增加,预测误差有所增加。相比均布力,集中力载荷下的预测误差更大,且加载位置靠近边缘处的误差更大。反演问题分别将位移场作为输入,将均布力大小和集中力位置作为输出构建位移场-边界条件代理模型,载荷为1000N和1600N时的预测误差分别为0.15%和-0.48%,在5mm和10mm处的载荷位置预测误差分别为0.38%和-1.84%,实现了对力边界条件的高精度预测。所提方法从数据学习角度出发,可为机械结构的静力学性能预测提供一种新的思路。

关键词: 代理模型, 神经网络, 数据学习, 性能预测, 有限元分析

Abstract: Aiming at the high cost of establishing a prediction model in the current mechanical structure optimization, a prediction method of structural static performance based on data learning is proposed.The cantilever beam is taken as the research object, and the finite element model is established to obtain the displacement field data of the simulation results.Then the boundary condition-displacement field surrogate model is constructed.The results show that the trend of displacement field distribution is consistent with the actual situation, and the relative error of the maximum displacement is -0.02% and -0.47% under the load of 1000N and 1600N, respectively.The influences of the magnitude of the uniform force and the position of the concentrated force on the displacement field prediction are discussed.The results show that the prediction error increases with the increase of load amplitude.Compared with the uniform force, the prediction error under the concentrated force load is larger, and the error is larger when the loading position is near the edge.In the inversion problem, the displacement fields are taken as the input, the uniform forces and the positions of concentrated force are taken as the output to construct the displacement field-boundary condition surrogate model.The prediction errors under the uniform loads of 1000N and 1600N are 0.15% and -0.48%, respectively, and the prediction errors under the load positions at 5mm and 10mm are 0.38% and -1.84%.The method based on data learning can provide new thinking for the prediction of structural static performance.

Key words: Data learning, Finite element analysis, Neural network, Performance prediction, Surrogate model

中图分类号: 

  • TP183
[1] DHAR V.Data science and prediction[J].Communications of the ACM,2013,56(12):64-73.
[2] SCHMIT J R L A,FARSHI B.Some approximation concepts for structural synthesis[J].AIAA Journal,1974,12(5):692-699.
[3] FORRESTER A,SOBESTER A,KEANE A.Engineering de-sign via surrogate modelling:apractical guide[M].Chichester:John Wiley & Sons,2008.
[4] HAN Z H,XU C Z,QIAO J L,et al.Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J].Acta Aeronautica et Astronautica Sinica,2020,41(5):30-70.
[5] MU X F,YAO W X,YU X Q,et al.Research on surrogate mo-dels in multidisciplinary design optimization[J].Chinese Journal of Computational Mechanics,2005,22(5):608-612.
[6] CHEN Y Y,ZHENG L.Simulation and Optimization of Vehicle Frontal Crashworthiness Based on Surrogate Model[J].Automotive Engineering:Zhejiang University,2018,40(6):673-678.
[7] TONG S G,ZHAO H,LIU H Q,et al.Optimization calculation method for efficiency of multistage split case centrifugal pump[J].Journal of Zhejiang University (Engineering Science),2019,53(5):988-996.
[8] QIAN J C,YI J X,CHENG Y S,et al.A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem[J].Engineering with Computers,2020,36:993-1009.
[9] TONG S G,ZHAO H,LIU H Q,et al.Multi-objective optimization of multistage centrifugal pump based on surrogate model[J].Journal of Fluids Engineering,2020,142(1):011101.
[10] YANG G F.Algorithms and applications of some forward andinverse problems in mathematical physics[D].Shanghai:Fudan University,2007.
[11] CLERMONT G,SVEN Z.The inverse problem in mathematical biology[J].Mathematical Biosciences,2015,260:11-15.
[12] GU Y,LEI J,FAN C M,et al.The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation[J].Engineering Analysis with Boundary Elements,2018,91:73-81.
[13] MA W C,WANG S L,GU J Y,et al.Deep feedback inverse problem solver[C]//European Conference on Computer Vision.Cham:Springer,2020:229-246.
[14] WANG Y F.Calculation method of inversion problem and its application[M].Beijing:Higher Education Press,2007.
[15] CHAO L M,XING C X,ZHANG Y.Data Science Studies:State-of-the-art and Trends[J].Computer Science,2018,45(1):1-13.
[16] CHAO L M,WANG R.Data Science Platform:Features,Technologies and Trends[J].Computer Science,2021,48(8):1-12.
[1] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[2] 周旭, 钱胜胜, 李章明, 方全, 徐常胜.
基于对偶变分多模态注意力网络的不完备社会事件分类方法
Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification
计算机科学, 2022, 49(9): 132-138. https://doi.org/10.11896/jsjkx.220600022
[3] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[4] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[5] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[6] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[7] 王润安, 邹兆年.
基于物理操作级模型的查询执行时间预测方法
Query Performance Prediction Based on Physical Operation-level Models
计算机科学, 2022, 49(8): 49-55. https://doi.org/10.11896/jsjkx.210700074
[8] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[9] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[10] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[11] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[12] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[13] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!