计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 194-199.doi: 10.11896/jsjkx.210400195

• 人工智能 • 上一篇    下一篇

基于学术知识图谱的辅助创新技术研究

钟将1, 尹红1, 张剑2   

  1. 1 重庆大学计算机学院 重庆400044
    2 重庆西信天元数据资讯有限公司 重庆401121
  • 收稿日期:2021-04-19 修回日期:2021-09-08 出版日期:2022-05-15 发布日期:2022-05-06
  • 通讯作者: 钟将(zhongjiang@cqu.ecu.cn)
  • 基金资助:
    重庆市高等教育教学改革研究重大项目(191003);教育部新工科研究与实践项目(E-JSJRJ20201335)

Academic Knowledge Graph-based Research for Auxiliary Innovation Technology

ZHONG Jiang1, YIN Hong1, ZHANG Jian2   

  1. 1 College of Computer Science,Chongqing University,Chongqing 400044,China
    2 Chongqing Xixintianyuan Data Information Co.,Ltd.,Chongqing 401121,China
  • Received:2021-04-19 Revised:2021-09-08 Online:2022-05-15 Published:2022-05-06
  • About author:ZHONG Jiang,born in 1974,Ph.D,professor.His main research interests include natural language processing,big data analysis and mining,cloud and network integration technology.
  • Supported by:
    Major Project of Chongqing Higher Education Teaching Reform Research(191003) and New Engineering Research and Practice Project of the Ministry of Education(E-JSJRJ20201335).

摘要: 计算机领域知识快速更新且存在较多歧义,导致学生自主创新时难以找到合理的解决方案。作为辅助创新工具,智能问答系统可以协助学生更快地把握学科发展前沿,精准地找出解决问题的方法。在大规模科技文献库上构建科研知识图谱,实现了辅助学生创新的智能问答系统。为了减小查询问句中噪声实体带来的影响,提出一种基于辅助任务的意图信息增强神经网络(Auxiliary Task Enhanced Intent Information for Question Answering in Computer Domain,ATEI-QA)。相比传统方法,该方法能够更精确地提取问句意图信息,减小噪声实体给意图识别带来的影响。在计算机领域数据集和通用数据集上与3个主流模型开展了对比实验,结果表明所提模型在领域数据集上的MAP和MRR值平均提升了3.27%和1.72%,在通用数据集上的MAP和MRR值平均提升了4.37%和2.81%。

关键词: 深度学习, 意图识别, 知识图谱, 智能问答

Abstract: Due to the rapid updating of computer knowledge with many ambiguities,it is difficult for students to seek reasonable solutions for independent innovation.As an auxiliary innovation tool,intelligent question-answering system can help students to grasp the frontier of subject development,find out solutions for problems faster and precisely.In this paper,a knowledge graph of scientific research is constructed based on a large-scale database of scientific and technological documents,which realizes an intelligent question answering system for assisting students in innovation.In order toreduce the influence of noisy entities on query questions,this paper proposes an auxiliary task enhanced intent information for question answering in computer domain(ATEI-QA).Compared with the traditional method,this method can extract the question intention information more accurately and further reduce the influence of noisy entity on intention recognition.Additionally,we conduct a series of experimental studies on computer and common datasets,and compare with three mainstream methods.Finally,experimental results demonstrate that our model achieves significant improvements against with three baselines,improving MAP and MRR scores by average of 3.27%,1.72% in the computer dataset and 4.37%,2.81% in the common dataset respectively.

Key words: Deep learning, Intent recognition, Knowledge graph, Question answering

中图分类号: 

  • TP391
[1]PRAGER J M.Open-Domain Question-Answering[J].Foundation and Trends in Information Retrieval,2006,1(2):91-231.
[2]SUN H,DHINGRA B,ZAHEER M,et al.Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:4231-4242.
[3]TONG P,ZHANG Q,YAO J.Leveraging domain context forquestion answering over knowledge graph[J].Data Science and Engineering,2019,4(4):323-335.
[4]LIANG Z P,JI Z,LIU X L.Research on Question and Answer System of Paper Template[J].Journal of Shenzhen University:Science and Technology Edition,2007,24(3):281-285.
[5]YAO X,VAN D B.Information extraction over structured data:Question answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.2014:956-966.
[6]BORDES A,CHOPRA S,WESTON J.Question Answeringwith Subgraph Embeddings[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).2014:615-620.
[7]DONG L,WEI F,ZHOU M,et al.Question answering overfreebase with multicolumn convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:260-269.
[8]HAO Y,ZHANG Y,LIU K,et al.An end-to-end model forquestion answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:221-231.
[9]XU K,REDDY S,FENG Y,et al.Question Answering on Freebase via Relation Extraction and Textual Evidence[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Long Papers).2016:2326-2336.
[10]SAXENA A,TRIPATHI A,TALUKDAR P.Improving Multi-hop Question Answering over Knowledge Graphs using Know-ledge Base Embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:4498-4507.
[11]JIANG H,YANG B,JIN L,et al.A BERT-Bi-LSTM-BasedKnowledge Graph Question Answering Method[C]//2021 International Conference on Communications,Information System and Computer Engineering (CISCE).IEEE,2021:308-312.
[12]KACUPAJ E,PLEPI J,SINGH K,et al.Conversational question answering over knowledge graphs with transformer and graph attention networks[J].arXiv:2104.01569,2021.
[13]XIONG H,WANG S,TANG M,et al.Knowledge Graph Question Answering with semantic oriented fusion model[J].Know-ledge-Based Systems,2021,221:106954.
[14]WU P,WU Y,WU L,et al.Modeling Global Semantics forQuestion Answering over Knowledge Bases[J].arXiv:2101.01510,2021.
[15]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean Semantic Web Conference.Cham:Springer,2018:593-607.
[16]HJELM R D,FEDOROV A,LAVOIE-MARCHILDON S,et al.Learning deep representations by mutual information estimation and maximization[J].arXiv:1808.06670,2018.
[17]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[18]WANG M,SMITH N A,MITAMURA T.What is the Jeopardy model? A quasi-synchronous grammar for QA[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning(EMNLP-CoNLL).2007:22-32.
[19]HUANG W Y.Deep Neural Networks for Legal Question Answering Based on Knowledge Graph[D].Beijing:University of Chinese Academy of Sciences,2020.
[20]YANG L,AI Q,GUO J,et al.aNMM:Ranking short answertexts with attention-based neural matching model[C]//Procee-dings of the 25th ACM International Conference on Information and Knowledge Management.2016:287-296.
[21]YU M,YIN W,HASAN K S,et al.Improved neural relation detection for knowledge base question answering[J].arXiv:1704.06194,2017.
[22]SACHAN M,XING E.Self-training for jointly learning to ask and answer questions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:629-640.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[4] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[5] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[6] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[7] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[8] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[9] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[10] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[11] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[14] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[15] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!