计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 194-199.doi: 10.11896/jsjkx.210400195
钟将1, 尹红1, 张剑2
ZHONG Jiang1, YIN Hong1, ZHANG Jian2
摘要: 计算机领域知识快速更新且存在较多歧义,导致学生自主创新时难以找到合理的解决方案。作为辅助创新工具,智能问答系统可以协助学生更快地把握学科发展前沿,精准地找出解决问题的方法。在大规模科技文献库上构建科研知识图谱,实现了辅助学生创新的智能问答系统。为了减小查询问句中噪声实体带来的影响,提出一种基于辅助任务的意图信息增强神经网络(Auxiliary Task Enhanced Intent Information for Question Answering in Computer Domain,ATEI-QA)。相比传统方法,该方法能够更精确地提取问句意图信息,减小噪声实体给意图识别带来的影响。在计算机领域数据集和通用数据集上与3个主流模型开展了对比实验,结果表明所提模型在领域数据集上的MAP和MRR值平均提升了3.27%和1.72%,在通用数据集上的MAP和MRR值平均提升了4.37%和2.81%。
中图分类号:
[1]PRAGER J M.Open-Domain Question-Answering[J].Foundation and Trends in Information Retrieval,2006,1(2):91-231. [2]SUN H,DHINGRA B,ZAHEER M,et al.Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:4231-4242. [3]TONG P,ZHANG Q,YAO J.Leveraging domain context forquestion answering over knowledge graph[J].Data Science and Engineering,2019,4(4):323-335. [4]LIANG Z P,JI Z,LIU X L.Research on Question and Answer System of Paper Template[J].Journal of Shenzhen University:Science and Technology Edition,2007,24(3):281-285. [5]YAO X,VAN D B.Information extraction over structured data:Question answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.2014:956-966. [6]BORDES A,CHOPRA S,WESTON J.Question Answeringwith Subgraph Embeddings[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).2014:615-620. [7]DONG L,WEI F,ZHOU M,et al.Question answering overfreebase with multicolumn convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:260-269. [8]HAO Y,ZHANG Y,LIU K,et al.An end-to-end model forquestion answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:221-231. [9]XU K,REDDY S,FENG Y,et al.Question Answering on Freebase via Relation Extraction and Textual Evidence[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Long Papers).2016:2326-2336. [10]SAXENA A,TRIPATHI A,TALUKDAR P.Improving Multi-hop Question Answering over Knowledge Graphs using Know-ledge Base Embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:4498-4507. [11]JIANG H,YANG B,JIN L,et al.A BERT-Bi-LSTM-BasedKnowledge Graph Question Answering Method[C]//2021 International Conference on Communications,Information System and Computer Engineering (CISCE).IEEE,2021:308-312. [12]KACUPAJ E,PLEPI J,SINGH K,et al.Conversational question answering over knowledge graphs with transformer and graph attention networks[J].arXiv:2104.01569,2021. [13]XIONG H,WANG S,TANG M,et al.Knowledge Graph Question Answering with semantic oriented fusion model[J].Know-ledge-Based Systems,2021,221:106954. [14]WU P,WU Y,WU L,et al.Modeling Global Semantics forQuestion Answering over Knowledge Bases[J].arXiv:2101.01510,2021. [15]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean Semantic Web Conference.Cham:Springer,2018:593-607. [16]HJELM R D,FEDOROV A,LAVOIE-MARCHILDON S,et al.Learning deep representations by mutual information estimation and maximization[J].arXiv:1808.06670,2018. [17]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [18]WANG M,SMITH N A,MITAMURA T.What is the Jeopardy model? A quasi-synchronous grammar for QA[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning(EMNLP-CoNLL).2007:22-32. [19]HUANG W Y.Deep Neural Networks for Legal Question Answering Based on Knowledge Graph[D].Beijing:University of Chinese Academy of Sciences,2020. [20]YANG L,AI Q,GUO J,et al.aNMM:Ranking short answertexts with attention-based neural matching model[C]//Procee-dings of the 25th ACM International Conference on Information and Knowledge Management.2016:287-296. [21]YU M,YIN W,HASAN K S,et al.Improved neural relation detection for knowledge base question answering[J].arXiv:1704.06194,2017. [22]SACHAN M,XING E.Self-training for jointly learning to ask and answer questions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:629-640. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 吴子仪, 李邵梅, 姜梦函, 张建朋. 基于自注意力模型的本体对齐方法 Ontology Alignment Method Based on Self-attention 计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190 |
[4] | 孔世明, 冯永, 张嘉云. 融合知识图谱的多层次传承影响力计算与泛化研究 Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph 计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144 |
[5] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[6] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[7] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[8] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[9] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[10] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[11] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[12] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[13] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[14] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[15] | 王杰, 李晓楠, 李冠宇. 基于自适应注意力机制的知识图谱补全算法 Adaptive Attention-based Knowledge Graph Completion 计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129 |
|