计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 221-226.doi: 10.11896/jsjkx.210400135

• 人工智能 • 上一篇    下一篇

基于用户关联的立场检测

李子仪, 周夏冰, 王中卿, 张民   

  1. 苏州大学计算机科学与技术学院 江苏 苏州215006
  • 收稿日期:2021-04-14 修回日期:2021-08-28 出版日期:2022-05-15 发布日期:2022-05-06
  • 通讯作者: 周夏冰(zhouxiabing@suda.edu.cn)
  • 作者简介:(zyli6@stu.suda.edu.cn)
  • 基金资助:
    国家自然科学基金面上项目(62176174)

Stance Detection Based on User Connection

LI Zi-yi, ZHOU Xia-bing, WANG Zhong-qing, ZHANG Min   

  1. School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • Received:2021-04-14 Revised:2021-08-28 Online:2022-05-15 Published:2022-05-06
  • About author:LI Zi-yi,born in 1996,postgraduate,is a member of China Computer Federation.Her main research interests include na-tural language processing and so on.
    ZHOU Xia-bing,born in 1988,Ph.D,lecturer,is a member of China Compu-ter Federation.Her main research in-terests include natural language processing and so on.
  • Supported by:
    National Natural Science Foundation of China General Program(62176174).

摘要: 立场检测的主要目的是挖掘用户对话题或事件等的立场态度。与其他文本分类任务不同,立场的表达更隐晦,立场的态度对用户更加敏感。目前已有的立场检测方法主要是对话题内容自身信息进行建模,该类方法忽略了话题内容的用户背景信息,但用户及其喜好信息极大地影响着对文本信息的精准挖掘,通过关联用户信息能够获得潜在的信息特征。因此,提出了基于用户关联的立场检测模型(USDM),通过构建用户之间的图网络来建立用户关联结构,利用卷积操作挖掘相同用户下相似的文本立场信息,从全局的角度构建立场检测模型。同时,加入注意力机制以增强文本用户感知表示。在公开数据集H&N14上的实验结果表明,相比其他模型,所提模型获得了较好的性能。同时,消融实验表明,考虑用户关联以及注意力机制对检测准确率的提升具有重要作用。

关键词: 立场检测, 图卷积神经网络, 注意力机制

Abstract: The main purpose of stance detection is to mine users’ attitude towards topics or events.Different from other text classification tasks,the expression about stance is more obscure,and the attitude is more sensitive to users.The current stance detection methods mainly model the information of topic content itself,which ignores the user background information.However,the information of users and their preferences greatly affects the accurate mining of text information,which enables the potential information characteristics to be obtained through the associated user information.Therefore,this paper proposes a user connection-based stance detection model (USDM),which builds a user connection by constructing a graph of users,and mines similar text stance information under the same user from a global perspective by convolution operation.At the same time,attention mechanism is added to enhance user-aware text representation.The experimental results on the public dataset H&N14 show that the proposed model achieves better performance than other models.Meanwhile,ablation experiments show that user association information and attention mechanism play an important role in improving detection accuracy.

Key words: Attention mechanism, Graph convolutional neural network, Stance detection

中图分类号: 

  • TP520
[1]SOMASUNDARAN S,WIEBE J.Recognizing stances in ideo-logical on-line debates[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.2010:116-124.
[2]REN Y F,ZHANG Y,ZHANG M S,et al.Context-SensitiveTwitter Sentiment Classification Using Neural Network[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.2016:215-221.
[3]DONG L,WEI F R,TAN C Q,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.2014:49-54.
[4]SUN Q Y,WANG Z Q,ZHU Q M,et al.Stance Detection with Hierarchical Attention Network[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:2399-2409.
[5]TANG D Y,QIN B,LIU T,et al.User modeling with neural network for review rating prediction[C]//Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence.2015:1340-1346.
[6]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS’17).2017:6000-6010.
[7]HASAN K S,NG V.Why are You Taking this Stance? Identi-fying and Classifying Reasons in Ideological Debates[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:751-762.
[8]SRIDHAR D,FOULDS J R,HUANG B,et al.Joint models of disagreement and stance in online debate[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:116-125.
[9]LI Y,CARAGEA C.Multi-Task Stance Detection with Sentiment and Stance Lexicons[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:6299-6305.
[10]BURFOOT C,BIRD S,BALDWIN T.Collective classification of congressional floor-debate transcripts[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics.2011:1506-1515.
[11]WALKER M A,ANAND P,ABBOTT R,et al.Stance classification using dialogic properties of persuasion[C]//Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2012:592-596.
[12]RAJADESINGAN A,LIU H.Identifying users with opposingopinions in twitter debates[C]//Social Computing,Behavioral-Cultural Modeling and Prediction-7th International Conference.2014:153-160.
[13]HASAN K S,NG V.Stance classification of ideological debates:Data,model,features,and constraints[C]//International Joint Conference on Natural Language Processing.2013:1348-1356.
[14]AUGENSTEIN I,ROCKTASCHEL T,VLACHOS A,et al.Stance Detection with Bidirectional Conditional Encoding[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:876-885.
[15]ZHANG B,YANG M,LI X T,et al.Enhancing Cross-targetStance Detection with Transferable Semantic-Emotion Know-ledge[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3188-3197.
[16]VIJAYARAGHAVAN P,VOSOUGHI S,ROY D.Automaticdetection and categorization of election-related tweets[C]//Proceedings of the International AAAI Conference on Web and Social Media.2016:703-706.
[17]STEFANOV P,DARWISH K,ATANASOV A,et al.Predicting the Topical Stance and Political Leaning of Media using Tweets[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:527-537.
[18]HASAN K S,NG V.Extra-Linguistic Constraints on StanceRecognition in Ideological Debates[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics.2013:816-821.
[19]CHEN W F,KU L W.UTCNN:a Deep Learning Model ofStance Classification on Social Media Text[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.2016:11-17.
[20]KOBBE J,HULPUS I,STUCKENSCHMIDT H.Unsupervised Stance Detection for Arguments from Consequences[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:50-60.
[21]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//International Conference on Learning Representations.2017:1-14.
[22]MARCHEGGIANI D,TITOV I.Encoding Sentences withGraph Convolutional Networks for Semantic Role Labeling[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:1506-1515.
[23]YAO L,MAO C S,LUO Y.Graph Convolutional Networks for Text Classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:7370-7377.
[24]GHOSAL D,MAJUMDER N,PORIA S,et al.DialogueGCN:A Graph Convolutional Neural Network for Emotion Recognition in Conversation[J].arXiv:1908.11540v1,2019.
[25]MARCHEGGIANI D,BASTINGS J,TITOV I.Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks[J].arXiv:1804.08313v2,2020.
[26]WANG Z C,LV Q S,LAN X H,et al.Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:349-357.
[27]PENNINGTON J,SOCHER R,MANNING C D.GloVe:Global Vectors for Word Representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing.2014:1532-1543.
[28]LI C,PORCO A,GOLDWASSER D.Structured Representation Learning for Online Debate Stance Prediction[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:3728-3739.
[29]CHANG C C,LIN C J.LIBSVM:A Library for Support Vector Machines[EB/OL].[2020-12-25].https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[30]ALLAWAY E,MCKEOWN K R.Zero-Shot Stance Detection:A Dataset and Model using Generalized Topic Representations[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:8913-8931.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[4] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[5] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[6] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[11] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[12] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[13] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[14] 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚.
融合双向门控循环单元和注意力机制的软件自承认技术债识别方法
Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism
计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075
[15] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!