计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 32-38.doi: 10.11896/jsjkx.220400004

• 6G 赋能智慧物联网技术与应用* 上一篇    下一篇

面向6G可信可靠智能的区块链分片与激励机制

王思明, 谭北海, 余荣   

  1. 广东工业大学自动化学院 广州 510006
  • 收稿日期:2022-04-01 修回日期:2022-04-29 出版日期:2022-06-15 发布日期:2022-06-08
  • 作者简介:(simingwang30@163.com)
  • 基金资助:
    国家重点研发计划(2020YFB1807802,2020YFB1807800)

Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence

WANG Si-ming, TAN Bei-hai, YU Rong   

  1. School of Automation,Guangdong University of Technology,Guangzhou 510006,China
  • Received:2022-04-01 Revised:2022-04-29 Online:2022-06-15 Published:2022-06-08
  • About author:WANG Si-ming,born in 1993,postgra-duate.His main research interests include edge computing and blockchain.
    YU Rong,born in 1979,Ph.D,professor,Ph.D supervisor.His main research interests include vehicular networks and blockchain.
  • Supported by:
    National Key R & D Program of China(2020YFB1807802,2020YFB1807800).

摘要: 第六代 (6G) 无线通信网络将成为内生智能、泛在连接以及全场景互联互通的基座,是实现可信可靠智能的重要基础。区块链技术被认为是提升6G网络性能的去中心化赋能技术。未来区块链的共识节点将由海量边缘设备组成,并通过无线网络连接。然而,自利的边缘设备参与区块链共识过程仍面临着信息不完全对称、资源限制和异构无线通信环境的挑战。为此,提出了面向6G可信可靠智能的区块链分片与激励机制。为了最大化区块链分片的收益和可靠性,提出了基于实用拜占庭机制的区块链分片架构,同时设计了一个基于契约理论的激励机制。首先,通过分析基于实用拜占庭的片内共识机制及其区块在无线网络中的广播特性,构建了维护区块链分片网络的计算和通信的能耗模型;然后,为了提高系统可靠性和抵御恶意攻击的能力,提出了基于主观逻辑的信誉机制;最后,分别在信息完全对称和不完全对称的条件下求出了最优契约组合。该契约组合最大化区块链服务请求者的区块收益,同时满足预算可行性、个体理性和激励相容性。仿真结果表明,基于契约理论的激励机制能更可靠地激励边缘节点参与区块链共识过程,并从经济学角度有效地维护区块链的运行。

关键词: 第六代无线通信网络, 激励机制, 契约理论, 区块链分片, 信誉机制

Abstract: The sixth generation(6G) wireless communication network will become the base of endogenous intelligence,ubiquitous connectivity,and full-scene interconnection.It is an important basis to realize dependable intelligence in the future.Blockchain is considered as the key decentralized-enabled technology to improve the performance of 6G networks.In the future,the consensus nodes of the blockchain will be composed of massive edge devices and connected through wireless networks.However,motivating self-interest edge devices to participate in the consensus process still faces the challenges of information asymmetry,resource constraints and heterogeneous wireless communication environment.To solve these challenges,a blockchain sharding framework and an incentive mechanism for trusted and dependable intelligence in 6G are proposed.Firstly,an incentive mechanism is presented based on contract theory,which aims to maximize the benefits and reliability of the blockchain sharding.By analyzing the practical byzantine fault tolerance (PBFT) based intrashard consensus mechanism,this paper design energy consumption model for auditing and transmitting the blocks in wireless networks.Secondly,in order to improve the system reliability,it proposes a reputation mechanism based on subjective logic.Finally,a set of optimal contracts under complete information and asymmetric information scnearios are abtained,which could optimize the block revenue for blockchain service requester,while ensuring some desired economic properties,i.e.,budget feasibility,individual rationality and incentive compatibility.Simulation results show that the proposed contract-based incentive mechanism can motivate edge devices to participate in the blockchain consensus process and maintain the operation of blockchain from the perspective of economics more efficiently.

Key words: 6G, Blockchain sharding, Contract theory, Incentive mechanism, Reputation mechanism

中图分类号: 

  • TP393
[1] GUO F,YU F R,ZHANG H,et al.Enabling massive IoT toward 6G:A comprehensive survey[J].IEEE Internet of Things Journal,2021,8(15):11891-11915.
[2] NGUYEN D C,DING M,PATHIRANA P N,et al.6G Internet of Things:A comprehensive survey[J].IEEE Internet of Things Journal,2021,9(1):359-383.
[3] KHAYYAM H,JAVADI B,JALILI M,et al.Artificial intelligence and internet of things for autonomous vehicles[M]//Nonlinear Approaches in Engineering Applications.Cham:Springer,2020:39-68.
[4] KANG J,XIONG Z,JIANG C,et al.Scalable and communication-efficient decentralized federated edge learning with multi-blockchain framework[C]//International Conference on Blockchain and Trustworthy Systems.Singapore:Springer,2020:152-165.
[5] SUN W,LEI S,WANG L,et al.Adaptive federated learning and digital twin for industrial internet of things[J].IEEE Transactions on Industrial Informatics,2020,17(8):5605-5614.
[6] MOZUMDER M A I,SHEERAZ M M,ATHAR A,et al.Overview:Technology Roadmap of the Future Trend of Metaverse based on IoT,Blockchain,AI Technique,and Medical Domain Metaverse Activity[C]//2022 24th International Conference on Advanced Communication Technology(ICACT).IEEE,2022:256-261.
[7] XIE J,ZHANG K,LU Y L,et al.Resource-efficient DAGBlockchain with Sharding for 6G Networks[J].IEEE Network,2021,36(1):189-196.
[8] FENG L,YANG Z,GUO S,et al.Two-layered blockchain architecture for federated learning over mobile edge network[J].IEEE Network,2021,36(1):45-51.
[9] HU S,LIANG Y C,XIONG Z,et al.Blockchain and artificial intelligence for dynamic resource sharing in 6G and beyond[J].IEEE Wireless Communications,2021,28(4):145-151.
[10] WANG W,JIAO Y,CHEN J,et al.Multi-Dimensional Contract Design for Blockchain Deployment in WSN under Information Asymmetry[C]//2021 IEEE Globecom Workshops.IEEE,2021:1-6.
[11] YANG X Y,PENG C G,YANG H,et al.Rational PBFT Consensus Algorithm with Evolutionary Game[J].Computer Science,2022,49(3):360-370.
[12] JIAO Y,WANG P,NIYATO D,et al.Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks[J].IEEE Transactions on Parallel and Distributed Systems,2019,30(9):1975-1989.
[13] LI J,LIU T,NIYATO D,et al.Contract-Theoretic Pricing for Security Deposits in Sharded Blockchain with Internet of Things (IoT)[J].IEEE Internet of Things Journal,2021,8(12):10052-10070.
[14] LI J,NIYATO D,HONG C S,et al.Cyber Insurance Design for Validator Rotation in Sharded Blockchain Networks:A Hierarchical Game-Based Approach[J].IEEE Transactions on Network and Service Management,2021,18(3):3092-3106.
[15] MANSHAEI M H,JADLIWALA M,MAITI A,et al.A game-theoretic analysis of shard-based permissionless blockchains[J].IEEE Access,2018,6:78100-78112.
[16] CHEN C,MA Q,CHEN X,et al.User Distributions in Shard-based Blockchain Network:Queueing Modeling,Game Analysis,and Protocol Design[C]//Proceedings of the Twenty-second International Symposium on Theory,Algorithmic Foundations,and Protocol Design for Mobile Networks and Mobile Computing.2021:221-230.
[17] SUN W,LEI S,WANG L,et al.Adaptive federated learning and digital twin for industrial internet of things[J].IEEE Transactions on Industrial Informatics,2020,17(8):5605-5614.
[18] YUN J,GOH Y,CHUNG J M.DQN-based optimization framework for secure sharded blockchain systems[J].IEEE Internet of Things Journal,2020,8(2):708-722.
[19] ZHANG Y,SONG L,SAAD W,et al.Contract-based incentive mechanisms for device-to-device communications in cellular networks[J].IEEE Journal on Selected Areas in Communications,2015,33(10):2144-2155.
[20] SUN P,CHE H,WANG Z,et al.Pain-FL:Personalized privacy-preserving incentive for federated learning[J].IEEE Journal on Selected Areas in Communications,2021,39(12):3805-3820.
[21] GAO L,WANG X,XU Y,et al.Spectrum trading in cognitive radio networks:A contract-theoretic modeling approach[J].IEEE Journal on Selected Areas in Communications,2011,29(4):843-855.
[1] 傅彦铭, 朱杰夫, 蒋侃, 黄保华, 孟庆文, 周兴.
移动众包中基于多约束工人择优的激励机制研究
Incentive Mechanism Based on Multi-constrained Worker Selection in Mobile Crowdsourcing
计算机科学, 2022, 49(9): 275-282. https://doi.org/10.11896/jsjkx.210700129
[2] 杨昕宇, 彭长根, 杨辉, 丁红发.
基于演化博弈的理性拜占庭容错共识算法
Rational PBFT Consensus Algorithm with Evolutionary Game
计算机科学, 2022, 49(3): 360-370. https://doi.org/10.11896/jsjkx.210900110
[3] 杜辉, 李卓, 陈昕.
基于在线双边拍卖的分层联邦学习激励机制
Incentive Mechanism for Hierarchical Federated Learning Based on Online Double Auction
计算机科学, 2022, 49(3): 23-30. https://doi.org/10.11896/jsjkx.210800051
[4] 王鑫, 周泽宝, 余芸, 陈禹旭, 任昊文, 蒋一波, 孙凌云.
一种面向电能量数据的联邦学习可靠性激励机制
Reliable Incentive Mechanism for Federated Learning of Electric Metering Data
计算机科学, 2022, 49(3): 31-38. https://doi.org/10.11896/jsjkx.210700195
[5] 童海,白光伟,沈航.
基于双向拍卖的k-匿名激励机制
Double-auction-based Incentive Mechanism for k-anonymity
计算机科学, 2019, 46(3): 202-208. https://doi.org/10.11896/j.issn.1002-137X.2019.03.030
[6] 廖新考,王力生.
基于社会规范准则和联合抵制的节点激励机制研究
Research on Incentive Mechanism Based on Social Norms and Boycott
计算机科学, 2014, 41(4): 28-30.
[7] 杨双双,郭玉翠,左赛哲,胡映然.
基于资源评价的信任管理模型
Trust Management Model Based on Evaluation of Resources
计算机科学, 2012, 39(8): 31-.
[8] 王浩云 徐焕良 任守纲 张晨.
基于第二价拍卖理论的P2P网络组播节点激励机制研究
Incentive Mechanisms for Multicast Nodes Based on Second-price Auction Theory in P2P Network
计算机科学, 2012, 39(11): 41-44.
[9] 胡建理,吴泉源,周斌.
基于信任的P2P拓扑进化机制
Effective Trust-based Topology Evolution Mechanism for P2P Networks
计算机科学, 2010, 37(1): 95-98.
[10] 冯健 房鼎益 陈晓江.
P2P流媒体激励机制研究

计算机科学, 2008, 35(5): 29-31.
[11] .
P2P资源的拍卖激励机制

计算机科学, 2007, 34(11): 71-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!