计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241100095-6.doi: 10.11896/jsjkx.241100095

• 信息安全 • 上一篇    下一篇

基于可变模糊理论的视频监控网络安全性能评估与印证研究

王克克1, 边悦1, 殷艳艳2   

  1. 1 中国航天系统科学与工程研究院 北京 100037
    2 北京师范大学-香港浸会大学联合国际学院 广东 珠海 519087
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 王克克(wangkeke126@sina.com)

Research on Security Performance Evaluation and Verification of Video Surveillance NetworkBased on Variable Fuzzy Theory

WANG Keke1, BIAN Yue1, YIN Yanyan2   

  1. 1 China Aerospace Academy of Systems Science and Engineering,Beijing 100037,China
    2 Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,Guangdong 519087,China
  • Online:2025-11-15 Published:2025-11-10

摘要: 当前对视频监控网络系统安全的研究仍停留在安全指标体系和指标权重的层面。为更深入开展视频监控网络系统的安全性研究,建立了采用可变模糊评价模型对视频监控网络系统进行安全性能评价的模型,并引入后悔理论对评价结果进行印证,然后采取实际案例验证了评价模型的有效性。采用可变模糊理论计算获得模糊评价模型、神经元激励函数模型、TOPSIS理想点模型、模糊优选评价模型的综合相对隶属度,然后获得这4种模型对应的评价结果,最后通过计算其算术均值而获得最终的评价等级。基于后悔理论的印证方法能够选择最优的评价方案,据此对采用可变模糊评价模型的评价结果进行印证。提出的评估模型有助于对视频监控网络的薄弱环节采取针对性措施,提高视频监控网络系统的整体安全性,为视频监控系统安全建设与使用提供保障。

关键词: 可变模糊理论, 视频, 监控, 网络, 安全, 评估, 后悔理论, 印证

Abstract: At present,research on the security of video surveillance network systems still remains at the level of security indicator systems and indicator weights.In order to further carry out research on the security of video surveillance network systems,a variable fuzzy evaluation model was established to evaluate the security performance of video surveillance network systems.Regret theory was introduced to verify the evaluation results,and actual cases were used to verify the effectiveness of the evaluation model.This study uses variable fuzzy theory to calculate the comprehensive relative membership degrees of fuzzy evaluation mo-del,neuron excitation function model,TOPSIS ideal point model,and fuzzy optimization evaluation model.Then,the evaluation results corresponding to these four models are obtained,and their arithmetic mean is calculated to obtain the final evaluation level.The verification method based on regret theory used in this study can select the optimal evaluation scheme,and thus verify the evaluation results using the variable fuzzy evaluation model.The evaluation model proposed in this study helps to take targeted measures for weak links in video surveillance networks,improve the overall security of video surveillance network systems,and provide guarantees for the security construction and use of video surveillance systems.

Key words: Variable fuzzy theory, Video, Surveillance, Network, Security, Evaluation, Regret theory, Verification

中图分类号: 

  • TP393.1
[1]YU C J.On the Security Construction of Public Security Video Network from the Angle of Graded Protection[J].China Public Security,2018(7):178-179.
[2]FANG X,WANG H,XU X L,et.al.On the Security Construction of Network Video Monitoring System in Sensitive Information Places[J].Network Security Technology AND Application,2024(6):142-144.
[3]ZOU T,TAO S,DONG F.Analysis on Security Risk Prevention and Governance of Network Video Monitoring System under the Background of Metauniverse[J].Computer Knowledge and Technology,2024,20(4):96-99,102.
[4]ZHOU S H,TANG Y,YANG Q R,et al.A Security Evaluation Method of Video Surveillance System Based on Network Anti kill Chain[J].Security Science and Technology,2023(9):49-56.
[5]XU Y Z.Network address planning of public security video surveillance project[J].Radio & Television Network,2023,30(8):56-58.
[6]LIU P H.Design and Implementation of Video Surveillance Network Device Identification and Security Monitoring System[D].Beijing:Beijing University of Posts and Telecommunications,2023.
[7]XU H.Research on Cyber-security of Railway Integrated Video Monitoring System[J].Railway Signalling & Communication Engineering,2023,20(5):39-43.
[8]GAO J,WANG K Y,HUANG S H.Research on Security Evaluation Index System for Video Monitoring Network[J].Netinfo Security,2021,21(12):78-85.
[9]ZHU L N,HUANG H B,ZHANG X F,et al.Analysis on Network Security Risks and Protective Measures of Industrial Intelligent Video Monitoring System[J].Security Science and Technology,2021(11):25-31.
[10]WANG C L,GAO Q.Dynamic Evaluation Method of Multi-Video Surveillance Network Security Risk for Police Equipment[J].Journal of Ordnance Equipment Engineering,2021,42(10):218-223.
[11]WANG T.Research on Current Situation and Security Problems of Network Video Monitoring System[J].Network Security Technology AND Application,2020(9):146-147.
[12]YUAN D Y,HUANG S H,GAO J.Research on Current Situation and Countermeasures of Video Surveillance Network Security Based on Scanning Analysis[J].Science and Technology Management Research,2021,41(4):198-204.
[13]YANG L M.Analysis of data security governance of public videomonitoring network[J].China Security & Protection,2020(7):10-13.
[14]XUE Y P.Design of Network Video Monitoring System Based on Embedded System and Network Information Security[J].China Computer & Communication,2019(12):78-79.
[15]LIU Y F.The Research on Network Security Access Protocolfor Power System Video Surveillance[D].Xi’an:Xidian University,2019.
[16]CUI E Z.Application of information technology in network videomonitoring of refinery safety production[J].Digital Space,2018(4):247.
[17]LI X K,LI B,SHI Y B,et al.Research on Wireless Video Monitoring System Technology for Safe Production under 4G Network[J].Computer Products and Circulation,2017(8):8.
[18]CHEN S Y.Theory and Model of Variable Fuzzy Sets and Its Application[M].Dalian:Dalian University of Technology Press,2009.
[19]BELL D E.Regret in Decision Making under Uncertainty[J].Operations Research,1982,30.
[20]GREEN S L.Rational choice theory:An overview[J/OL].http://business.baylor.edu/steve_green/green1.doc.
[21]YAO Y.A Evaluation Method Based on Regret Theory andGrey Entropy TOPSIS[J].Journal of Mathematics in Practice and Theory,2024(10):121-129.
[22]TVERSKY A,KAHNEMAN D.Advances in Prospect Theory:Cumulative Representation of Uncertainty[J].Journal of Risk and Uncertainty,1992,5(4):297-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!