计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250100007-9.doi: 10.11896/jsjkx.250100007
张维婧, 高彦平
ZHANG Weijing, GAO Yanping
摘要: 在社会网络中,个体属性对群体观点演化起着重要的作用,为了深入理解这一现象,基于传统的HK(Hegselmann-Krause)模型,引入个体对观点差异的敏感性和个体对意见领袖的信任度,提出一种新的观点演化模型。个体对观点差异的敏感性是指个体在更新自己的观点时,对其他个体观点差异的敏感程度。这种敏感性通过一个敏感性系数来量化,系数越高,表明个体越倾向于与自己观点接近的其他个体进行交流和互动。这种机制可能导致观点的极化,因为个体更可能与观点相似的人交流,从而加强已有的观点。个体对意见领袖的信任度描述了个体在形成观点时对意见领袖的依赖程度,在模型中,每个个体可能以不同的信任度接受意见领袖的观点影响。首先对模型进行简要理论分析,通过在无标度网络中的仿真模拟,探讨这两种属性对观点演化的影响。研究结果表明,个体对观点差异越敏感,观点值的发散程度越大,收敛时间增长。个体对意见领袖的信任度越高,群体观点会越快趋向意见领袖的观点。随后增加意见领袖数量,构建包含两个意见领袖的改进HK模型,通过仿真实验,分析接收到意见领袖观点的个体比例以及个体对意见领袖的信任度对观点演化的影响。实验结果表明,个体对意见领袖的信任度越高,群体观点越容易向意见领袖的观点靠拢,且群体观点的收敛速度更快。同时,接收意见领袖观点的个体比例越高,群体观点的演化过程越容易受到意见领袖观点的主导,群体观点的最终稳定状态也更接近意见领袖的观点。
中图分类号:
| [1]ACEMOGLU D,OZDAGLAR A.Opinion Dynamics and Lear-ning in Social Networks[J].Dynamic Games and Applications,2011,1(1):3-49. [2]GALAM S.Minority Opinion Spreading in Random Geometry[J].European Physical Journal B,2002,25:403-406. [3]SZNAJD-WERON K,SZNAJD J.Opinion Evolution in Closed Community[J].HSC Research Reports,2000,11(6):1157-1165. [4]SOOD V,REDNER S.Voter Model on Heterogeneous Graphs[J].Physical Review Letters,2005,94(17):178701. [5]DEGROOT M H.Reaching a Consensus[J].Journal of theAmerican Statistical Association,1974,69(345):118-121. [6]DEFFUANT G,NEAU D,AMBLARD F,Weisbuch G.Mixing Beliefs Among Interacting Agents[J].Advances in Complex Systems,2000,3(1):87-98. [7]HEGSELMANN R,KRAUSE U.Opinion Dynamics and Boun-ded Confidence:Models,Analysis and Simulation[J].Journal of Artificial Societies and Social Simulation,2002,5(3):1-33. [8]MEI W,BULLO F,CHEN G,et al.Micro-Foundation of Opi-nion Dynamics:Rich Consequences of the Weighted-Median Mechanism[J].Physical Review Research,2022,4(2):023213. [9]LI G J,PORTER M A.Bounded-Confidence Model of Opinion Dynamics with Heterogeneous Node-Activity Levels[J].Physical Review Research,2023,5(2):023179. [10]ZHANG S Q,LIU B,CHAI L.Improved Hegselmann-Krauseopinion dynamics model based on conformity behavior[J].Control and Decision,2024,39(3):965-974. [11]CHEN Y X,CHEN X Y,LV Y.Research on Public Opinion Reversal on Micro Blog Based on Improved Hegselmann-Krause Model[J].Information studies:Theory & Application,2020,43(1):82-89. [12]XI X M,LIU Q S,CHAI L.Opinion Dynamics Analysis of Nucleus Hegselmann-Krause Model in Social Networks[J].IFAC-PapersOnLine,2022,55(3):25-30. [13]WANG Y Q,YOU X Q,JIAO J,et al.Opinion adoption:reasoning based on self and individual differences[J].Acta Psychologica Sinica,2015,47(8):1039-1049. [14]HE C,ZENG J,ZHANG G,et al.Generalized Opinion Dynamics Model for Social Trust Networks[J].Journal of Combinatorial Optimization,2022,44:3641-3662. [15]BAMAKAN S,NURGALIEV I,QU Q.Opinion Leader Detection:A Methodological Review[J].Expert Systems with Applications,2019,115:200-222. [16]QIU Z J.The impact of opinion leader characteristics in short videos on consumer trust and participation[J].Frontiers of Social Sciences,2020,9(8):1235-1245. [17]KANG M,LIANG T,SUN B,et al.Detection of Opinion Lea-ders:Static vs.Dynamic Evaluation in Online Learning Communities[J].Heliyon,2023,9(4):e14844. [18]HE J J,ZHANG Y N.Group opinion evolution model based on relationship degree and simulation[J].Application Research of Computers,2017,34(6):5. [19]CHI Y X,LIU Y J.Research on the mechanism of online public opinion communication under reverse psychology[J].Systems Engineering and Engineering Management,2019,34(5):610-620. [20]CALVELLI M,CROKIDAKIS N,PENNA T J P.Phase Transitions and Universality in theSznajd Model with Anticonformity[J].Physica A:Statistical Mechanics and Its Applications,2019,513:518-523. [21]CHEN T,WANG Y,YANG J,et al.Modeling Public Opinion Reversal Process with the Considerations of External Intervention Information and Individual Internal Characteristics[J].Healthcare,2020,8(2):160. [22]LIU Q S,XI X M,CHAI L.Analysis and application of bounded confidence opinion dynamics with gravitational-like attraction[J].Acta Automatica Sinica,2023,49(9):1967-1975. [23]BARABÁSI A L,ALBERT R.Emergence of Scaling in Random Networks[J].Science,1999,286(5439):509-512. |
|
||