计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250200043-7.doi: 10.11896/jsjkx.250200043

• 计算机图形学&多媒体 • 上一篇    下一篇

基于特征增强和群组混合注意力的棉花病害检测

王宏强, 赵晖, 贾振红   

  1. 新疆大学计算机科学与技术学院 乌鲁木齐 830049
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 赵晖(zhaohui@xju.edu.cn)
  • 作者简介:zsebzy@stu.xju.edu.cn
  • 基金资助:
    自治区重点研发项目(2023B01032);国家重大科技专项课题(2022ZD0115802)

Cotton Disease Detection Based on Feature Enhancement and Group Mix Attention

WANG Hongqiang, ZHAO Hui, JIA Zhenhong   

  1. College of Computer Science and Technology,Xinjiang University,Urumqi 830049,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Key R&D Projects in the Autonomous Region(2023B01032) and National Science and Technology Major Project of the Ministry of Science and Technology of China(2022ZD0115802).

摘要: 为了在田间真实环境中对棉花病害进行快速、准确检测,提出了一个基于特征增强和注意力机制的棉花病害目标检测模型。为确保模型在真实田间环境中检测的准确性,在Neck模块中,使用Group Mix Attention来联系上下文信息丰富特征图信息,捕获更多样化和细微的特征。使用特征增强模块对特征图进行加权处理,以降低背景或其他物体对图像中目标的干扰。所提模型使用了SIoU损失函数,能够有效提高真实田间环境中模型的检测精度,有效减少了模型误检和漏检的情况。实验结果表明,所提模型在自建真实田间环境棉花病害目标检测数据集上均表现出色,有效提高了检测精度。与基线模型相比,所提模型的mAP和Precision分别提升了2个百分点和4.5个百分点。

关键词: 棉花病害, 小目标, 特征增强, 注意力机制, 损失函数

Abstract: In order to achieve rapid and accurate detection of cotton diseases in real field environments,this paper proposes a cotton disease target detection model based on feature enhancement and attention mechanism.To ensure the accuracy of the model’sdetection in real field environments,an improved feature enhancement module is used in the Neck module to weight the feature maps and reduce the interference of background or other objects on the targets in the image.After the feature enhancement mo-dule,Group Mix Attention is used to connect contextual information and enrich the feature map information.The proposed model can effectively improve the detection accuracy of models in real field environments,effectively reducing the occurrence of model false positives and false negatives using SIoU loss function.The experimental results show that the proposed model performs well on the self built real field environment cotton disease target detection dataset,effectively improving the detection accuracy of the model in real field environments.Compared with the baseline model,the mAP and Precision have increased by 2 percentage points and 4.5 percentage points.

Key words: Cotton diseases and pests, Small goals, Feature enhancement, Attention mechanism, Loss function

中图分类号: 

  • TP391
[1]REDMON J.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016.
[2]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference.Amsterdam,The Netherlands,.Springer,2016:21-37.
[3]LIN T.Focal loss for dense object detection[J].arXiv:1708.02002,2017.
[4]TAN M,PANG R,LE Q V.EfficientDet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790.
[5]TIAN Z,SHEN C,CHEN H,et al.FCOS:Fully convolutionalone-stage object detection[J].arXiv:1904.01355,2019.
[6]LAW H,DENG J.CornerNet:Detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:734-750.
[7]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587.
[8]CAI Z,VASCONCELOS N.Cascade R-CNN:Delving into high quality object detection[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:6154-6162.
[9]GIRSHICK R.Fast R-CNN[J].arXiv:1504.08083,2015.
[10]REN S.Faster R-CNN:Towards real-time object detection with region proposal networks[J].arXiv:1506.01497,2015.
[11]HAQUE M A,MARWAHA S,DEB C K,et al.Deep learning-based approach for identification of diseases of maize crop[J].Scientific Reports,2022,12(1):6334.
[12]ZHAO Y,SUN C,XU X,et al.RIC-Net:A plant disease classification model based on the fusion of inception and residual structure and embedded attention mechanism[J].Computers and Electronics in Agriculture,2022,193:106644.
[13]FAN X,SUN T,CHAI X,et al.YOLO-WDNet:A lightweight and accurate model for weeds detection in cotton field[J].Computers and Electronics in Agriculture,2024,225:109317.
[14]WANG B,HUA J,XIA L,et al.A defect detection method for Akidzuki pears based on computer vision and deep learning[J].Postharvest Biology and Technology,2024,218:113157.
[15]SYED-AB-RAHMAN S F,HESAMIAN M H,PRASAD M.Citrus disease detection and classification using end-to-end anchor-based deep learning model[J].Applied Intelligence,2022,52(1):927-938.
[16]JOHNSON J,SHARMA G,SRINIVASAN S,et al.Enhancedfield-based detection of potato blight in complex backgrounds using deep learning[J].Plant Phenomics,2021,2021:9835724.
[17]BAO W,ZHU Z,HU G,et al.UAV remote sensing detection of tea leaf blight based on DDMA-YOLO[J].Computers and Electronics in Agriculture,2023,205:107637.
[18]TIAN Y,WANG S,LI E,et al.MD-YOLO:Multi-scale dense YOLO for small target pest detection[J].Computers and Electronics in Agriculture,2023,213:108233.
[19]FAN Z,LIU Q.Adaptive region-aware feature enhancement for object detection[J].Pattern Recognition,2022,124:108437.
[20]QI J,LIU X,LIU K,et al.An improved YOLOv5 model based on visual attention mechanism:Application to recognition of tomato virus disease[J].Computers and Electronics in Agriculture,2022,194:106780.
[21]ZHANG Y,MA B,HU Y,et al.Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model[J].Computers and Electronics in Agriculture,2022,203:107484.
[22]GE C,DING X,TONG Z,et al.Advancing vision transformers with group-mix attention[J].arXiv:2311.15157,2023,11:113027-113041.
[23]DENG C,WANG M,LIU L,et al.Extended feature pyramid network for small object detection[J].IEEE Transactions on Multimedia,2021,24:1968-1979.
[24]LI S,LIU C,TANG K,et al.Improved YOLOv5s algorithm for small target detection in UAV aerial photography[J].IEEE Access,2024.
[25]JING R,ZHANG W,LIU Y,et al.An effective method for small object detection in low-resolution images[J].Engineering Applications of Artificial Intelligence,2024,127:107206.
[26]GAO J,GENG X,ZHANG Y,et al.Augmented weighted bidirectional feature pyramid network for marine object detection[J].Expert Systems with Applications,2024,237:121688.
[27]MA J,LU A,CHEN C,et al.YOLOv5-Lotus:An efficient object detection method for lotus seedpod in a natural environment[J].Computers and Electronics in Agriculture,2023,206:107635.
[28]SONG G,DU H,ZHANG X,et al.Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention[J].Engineering Applications of Artificial Intelligence,2024,128:107455.
[29]HUANG M,YAN W,DAI W,et al.EST-YOLOv5s:SAR image aircraft target detection model based on improved YOLOv5s[J].IEEE Access,2023,11:113027-113041.
[30]VARGHESE R,SAMBATH M.YOLOv8:A novel object detection algorithm with enhanced performance and robustness[C]//2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems(ADICS).IEEE,2024:1-6.
[31]GEVORGYAN Z.SIoU loss:More powerful learning for bounding box regression[J].arXiv:2205.12740,2022.
[32]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[33]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722.
[34]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542.
[35]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.
[36]ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:Fasterand better learning for bounding box regression[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:12993-13000.
[37]ZHANG Y F,REN W,ZHANG Z,et al.Focal and efficient IoU loss for accurate bounding box regression[J].Neurocomputing,2022,506:146-157.
[38]TONG Z,CHEN Y,XU Z,et al.Wise-IoU:Bounding box regression loss with dynamic focusing mechanism[J].arXiv:2301.10051,2023.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!