计算机科学 ›› 2025, Vol. 52 ›› Issue (12): 60-70.doi: 10.11896/jsjkx.241100011
赵宇轩1, 余定峰2,3, 李冬雪1, 徐以东1, 李北明1
ZHAO Yuxuan1, YU Dingfeng2,3, LI Dongxue1, XU Yidong1, LI Beiming1
摘要: 太阳活动直接影响日球层环境和地球上的生命,太阳黑子数(SN)是最重要和最常预测的太阳活动指数之一。提高SN预测精度可以为气候模型提供更可靠的数据支持,对于理解太阳活动周期具有重要意义。对此,提出一种结合自适应噪声完备集合经验模态分解(CEEMDAN)、混合神经网络和注意力机制的多尺度SN序列预测模型。该方法使用3种不同的数据集,分别是1818-2024年每日SN、1749-2024年月均SN和1700-2023年年均SN。由于SN序列的非平稳性、非高斯性和非线性性质,因此先利用CEEMDAN将太阳活动在各时间尺度上的变化分量分解为若干不同频率子序列,将子序列与原始序列相结合作为强化特征集,增强模型对太阳活动变化的表征能力,再利用时序卷积神经网络(TCNs)作为特征提取的前沿,融入双向长短时记忆神经网络(BiLSTM)捕捉时间序列的长期依赖性,同时引入注意力机制(Attention)动态识别并加权序列中的关键时间特征。在3种数据集上进行消融实验,结果表明,所提模型各模块之间具有良好的协同作用。在此基础上对比部分已有模型,各数据集的预测精度均有所提高。利用该模型预测SN,得到年、月、日3种不同频率的预测结果,将预测结果作为多时间尺度特征融合形成最终预测结果。结果表明,太阳活动在2025年呈现出显著增强的趋势,并预计将在本年达到第25个太阳活动周期的活动高峰,年均SN峰值预计为233.9。
中图分类号:
| [1]TANG J,ZHANG X.Smoothing monthly mean prediction of Sunspot number based on Chaos theory [J].Acta Physical Sinica,2012,61(16):543-549. [2]WANG J L,HAN Y B.Discussion on the method of “similar week” and the prediction of the month-by-month value of sunspot number in the 23rd week[J].Journal of Space Science,2000(3):278-281. [3]MIAO J,WANG J L,LIU S Q,et al.Prediction of the start time of the 24th active week by using similarity cycle method [J].Chinese Journal of Space Science,2007(6):448-452. [4]PAN Y,ZHANG X Y,ZHANG Q Z.Chaotic Time Series Prediction of Sunspots Number with Wavelet Packet-wavelet Neural Network[J].Computer Science,2013,40(6):260-264. [5]DING G,ZHONG S S.Prediction of Sunspot number based on time-varying threshold process neural network [J].Acta Physical Sinica,2007(2):1224-1230. [6]DING L G,LAN R S,JIANG Y,et al.Based on neural network of sunspots area smooth month average prediction [J].Journal of Atmospheric Sciences,2012,35(4):508-512. [7]SUN T L,LI G H.EEMD and RBF neural network for sunspot monthly mean prediction[J].Computer Engineering and Applications,2017,53(24):252-256,262. [8]LIANG B,LIN Y Q,DAI W,et al.Analysis of sunspot activity prediction based on multivariate LSTM network[J].Astronomical Research and Technology,2020,17(3):322-333. [9]WANG Q,LI J,GUO L.Solar cycle prediction using a longshort-term memory deep learning model[J].Research in Astronomy and Astrophysics,2021,21(1):121-128. [10]PALA Z,ATICI R.Forecasting sunspot time series using deep learning methods[J].Solar Physics,2019,294(5):50. [11]PANIGRAHI S,PATTANAYAK R M,SETHY P K,et al.Forecasting of sunspot time series using a hybridization of ARIMA,ETS and SVM methods[J].Solar Physics,2021,296(1):6. [12]KUMAR A,KUMAR V.Stacked 1D Convolutional LSTMsConvLSTM1D) Model for Effective Prediction of Sunspot Time Series[J].Solar Physics,2023,298(10):121. [13]PENG X.Sunspot Activity and Cycle Prediction Study Based on Time Series Algorithm and CNN-LSTM Modeling[C]//2024 IEEE 4th International Conference on Power,Electronics and Computer Applications(ICPECA).IEEE,2024:1211-1215. [14]ZHUO R,HE J,DUAN D,et al.Prediction of solar activities:Sunspot numbers and solar magnetic synoptic maps[J].Science China Earth Sciences,2024,67(8):2460-2477. [15]BAI S,KOLTER J Z,KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence mo-deling[J].arXiv:1803.01271,2018. [16]SIAMI-NAMINI S,TAVAKOLI N,NAMIN S A.The Perfor-mance of LSTM and BiLSTM in Forecasting Time Series[C]//2019 IEEE International Conference on Big Data.2019:3285-3292. [17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [18]ZHANG Y,YAN J.Crossformer:Transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//The Eleventh International Conference on Learning Representations.2023. [19]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11106-11115. [20]EKAMBARAM V,JATI A,NGUYEN N,et al.Tsmixer:Lightweight mlp-mixer model for multivariate time series forecasting[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2023:459-469. |
|
||