计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600038-8.doi: 10.11896/jsjkx.240600038
赵耀帅, 张毅
ZHAO Yaoshuai, ZHANG Yi
摘要: 在民航领域,提升旅客满意度的关键之一是了解旅客的个性化需求并提供定制化的旅行服务,尤其是在航班座位分配上。然而,实现这一目标面临两个主要挑战:如何准确建模旅客的偏好以及如何合理分配座位。传统方法往往要求对旅客的真实偏好有明确了解,但当前的收费座位选择和先到先得的策略难以全面满足旅客需求。为了解决这一问题,需要考虑座位的可用性、空间相关性以及旅客之间的社交关系。文中提出了一种新的解决方案,通过从个体和社交两个维度建模旅客偏好,并将座位分配视为一个组合优化问题,以尽可能满足旅客的个体和社交偏好,同时遵循业务规则和旅客价值。该方案利用迭代局部搜索算法来优化座位分配。实验结果表明,该方法能够有效建模旅客的座位偏好,并显著提升航班的整体满意度。
中图分类号:
[1]崔春生.电子商务推荐系统的理论与应用研究[M].北京:经济科学出版社,2013. [2]LEE B K,LEE W N.The Effect of Information Overload onConsumer Choice Quality in an Online Environment [J].Psychology & Marketing,2004,21(3):159-183. [3]PARK Y J,CHANG K N.Individual and Group Behavior-Based Consumer Profile Model for Personalized Product Recommendation[J].Expert Systems with Applications,2009,36(2):1932-1939. [4]SCHAFER J B,FRANKOWSKI D,HERLOCKER J,et al.Collaborative Filtering Recommender Systems[M].New York:Springer Berlin Heidelberg Press,2007:291-324. [5]PAZZANI M J,BILLSUS D.Content-Based RecommendationSystems[M].New York:Springer Berlin Heidelberg Press,2007:325-341. [6]BURKE R.Knowledge-Based Recommender Systems[J].Encyclopedia of Library and Information Systems,2000,69(32):175-186. [7]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based Collaborative Filtering Recommendation Algorithms[C]//Procee-dings of the 10th International Conference on World Wide Web,Hong Kong,2001.New York:ACM,2001:285-295. [8]AFAQ A,GAUR L,SINGH G,et al.COVID-19:transforming air passengers’ behaviour and reshaping their expectations towards the airline industry[J].Tourism Recreation Research,2023,48(5):800-808. [9]LU J,MENG Y C,TIMMERMANS H,et al.Modeling hesitancy in airport choice:A comparison of discrete choice and machine learning methods[J].Transportation Research Part A:Policy and Practice,2021(147):230-250. [10]MOONEY R J,ROY L.Content-Based Book Recommending Using Learning for Text Categorization[C]//Proceedings of the fifth ACM Conference on Digital Libraries.San Antonio,New York:ACM,2000:195-204. [11]KONNO N,ARVIND U.Raghunathan.Data-driven joint optimization of pricing and seat allocation in trains[J].WIT Tran-sactions on the Built Environment,2020(199):379-392. [12]LI Z,LONG G,ZHOU T,et al.Personalized Federated Collaborative Filtering:A Variational AutoEncoder Approach[J].ar-Xiv:2408.08931,2024. [13]ZHANG X,ZHOU X,CHEN L,et al.Explainable recommendations with nonnegative matrix factorization[J].Artificial Intelligence Review,2023,56(Suppl 3):3927-3955. [14]JEONG J,CHOW Y,TENNENHOLTZ G,et al.Factual and Personalized Recommendations using Language Models and Reinforcement Learning[J].arXiv:2310.06176,2023. [15]ALHIJAWI B,AWAJAN A.Genetic algorithms:Theory,gene-tic operators,solutions,and applications[J].Evolutionary Intelligence,2024,17(3):1245-1256. [16]LI Y,LIU Y.Multi-airport system flight slot optimization method based on absolute fairness[J].Mathematical Biosciences and Engineering,2023,20(10):17919-17948. [17]ZHANG H,JIANG C,BEAULIEU N C,et al.Resource allocation for cognitive small cell networks:A cooperative bargaining game theoretic approach[J].IEEE Transactions on Wireless Communications,2015,14(6):3481-3493. |
|