计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600038-8.doi: 10.11896/jsjkx.240600038

• 大数据&数据科学 • 上一篇    下一篇

民航旅客个体和社交偏好建模及航班座位分配优化

赵耀帅, 张毅   

  1. 中国民航信息网络股份有限公司 北京 101318
    民航旅客服务智能化应用技术重点实验室 北京 101318
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 张毅(zhangyi@travelsky.com.cn)
  • 作者简介:(yszhao@travelsky.com.cn)

Modeling of Civil Aviation Passenger Individual and Social Preferences and Optimization of Flight Seat Allocation

ZHAO Yaoshuai, ZHANG Yi   

  1. TravelSky Technology Limited,Beijing 101318,China
    Key Laboratory of Intelligent Application Technology for Civil Aviation Passenger Services,CAAC,Beijing 101318,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:ZHANG Yi,born in 1982,senior researcher,engineer.His main research interests include civil aviation passenger market and business management,civil aviation revenue management,green IT and sustainable development inaviation.

摘要: 在民航领域,提升旅客满意度的关键之一是了解旅客的个性化需求并提供定制化的旅行服务,尤其是在航班座位分配上。然而,实现这一目标面临两个主要挑战:如何准确建模旅客的偏好以及如何合理分配座位。传统方法往往要求对旅客的真实偏好有明确了解,但当前的收费座位选择和先到先得的策略难以全面满足旅客需求。为了解决这一问题,需要考虑座位的可用性、空间相关性以及旅客之间的社交关系。文中提出了一种新的解决方案,通过从个体和社交两个维度建模旅客偏好,并将座位分配视为一个组合优化问题,以尽可能满足旅客的个体和社交偏好,同时遵循业务规则和旅客价值。该方案利用迭代局部搜索算法来优化座位分配。实验结果表明,该方法能够有效建模旅客的座位偏好,并显著提升航班的整体满意度。

关键词: 座位分配优化, 旅客偏好建模, 组合优化

Abstract: In the civil aviation industry,one of the keys to improvingpassenger satisfaction lies in understanding travelers’ personalized needs and providing customized travel services,particularly in flight seat allocation.However,achieving this goal faces two major challenges: how to accurately model passenger preferences and how to allocate seats rationally.Traditional methods often require explicit knowledge of passengers’ true preferences,yet current strategies such as paid seat selection and first-come-first-served approaches struggle to fully satisfy passenger demands.To address this issue,it is essential to consider seat availability,spatial correlations,and social relationships among passengers.This paper proposes a novel solution that models passenger preferences from both individual and social dimensions,framing seat allocation as a combinatorial optimization problem aimed at maximizing the fulfillment of individual and social preferences while adhering to business rules and passenger value.The solution employs an iterative local search algorithm to optimize seat allocation.Experimental results demonstrate that this method effectively models passenger seat preferences and significantly enhances overall flight satisfaction.

Key words: Seat allocation optimization, Passenger preference modeling, Combinatorial optimization

中图分类号: 

  • F560.8
[1]崔春生.电子商务推荐系统的理论与应用研究[M].北京:经济科学出版社,2013.
[2]LEE B K,LEE W N.The Effect of Information Overload onConsumer Choice Quality in an Online Environment [J].Psychology & Marketing,2004,21(3):159-183.
[3]PARK Y J,CHANG K N.Individual and Group Behavior-Based Consumer Profile Model for Personalized Product Recommendation[J].Expert Systems with Applications,2009,36(2):1932-1939.
[4]SCHAFER J B,FRANKOWSKI D,HERLOCKER J,et al.Collaborative Filtering Recommender Systems[M].New York:Springer Berlin Heidelberg Press,2007:291-324.
[5]PAZZANI M J,BILLSUS D.Content-Based RecommendationSystems[M].New York:Springer Berlin Heidelberg Press,2007:325-341.
[6]BURKE R.Knowledge-Based Recommender Systems[J].Encyclopedia of Library and Information Systems,2000,69(32):175-186.
[7]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based Collaborative Filtering Recommendation Algorithms[C]//Procee-dings of the 10th International Conference on World Wide Web,Hong Kong,2001.New York:ACM,2001:285-295.
[8]AFAQ A,GAUR L,SINGH G,et al.COVID-19:transforming air passengers’ behaviour and reshaping their expectations towards the airline industry[J].Tourism Recreation Research,2023,48(5):800-808.
[9]LU J,MENG Y C,TIMMERMANS H,et al.Modeling hesitancy in airport choice:A comparison of discrete choice and machine learning methods[J].Transportation Research Part A:Policy and Practice,2021(147):230-250.
[10]MOONEY R J,ROY L.Content-Based Book Recommending Using Learning for Text Categorization[C]//Proceedings of the fifth ACM Conference on Digital Libraries.San Antonio,New York:ACM,2000:195-204.
[11]KONNO N,ARVIND U.Raghunathan.Data-driven joint optimization of pricing and seat allocation in trains[J].WIT Tran-sactions on the Built Environment,2020(199):379-392.
[12]LI Z,LONG G,ZHOU T,et al.Personalized Federated Collaborative Filtering:A Variational AutoEncoder Approach[J].ar-Xiv:2408.08931,2024.
[13]ZHANG X,ZHOU X,CHEN L,et al.Explainable recommendations with nonnegative matrix factorization[J].Artificial Intelligence Review,2023,56(Suppl 3):3927-3955.
[14]JEONG J,CHOW Y,TENNENHOLTZ G,et al.Factual and Personalized Recommendations using Language Models and Reinforcement Learning[J].arXiv:2310.06176,2023.
[15]ALHIJAWI B,AWAJAN A.Genetic algorithms:Theory,gene-tic operators,solutions,and applications[J].Evolutionary Intelligence,2024,17(3):1245-1256.
[16]LI Y,LIU Y.Multi-airport system flight slot optimization method based on absolute fairness[J].Mathematical Biosciences and Engineering,2023,20(10):17919-17948.
[17]ZHANG H,JIANG C,BEAULIEU N C,et al.Resource allocation for cognitive small cell networks:A cooperative bargaining game theoretic approach[J].IEEE Transactions on Wireless Communications,2015,14(6):3481-3493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!