计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 30-34.

• 综述研究 • 上一篇    下一篇

步态识别现状与发展

金堃, 陈少昌   

  1. 海军工程大学电子工程学院 武汉430000
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 陈少昌(1962-),男,硕士,教授,主要研究方向为电路与系统的电磁兼容性研究,E-mail:gfssfkqp@163.com(通信作者)。
  • 作者简介:金 堃(1993-),女,硕士生,助理工程师,主要研究方向为电路与系统,E-mail:Jinkunhg@163.com;
  • 基金资助:
    本文受国家自然科学基金(91538201),泰山学者专项经费(ts201511020)资助。

Status and Development of Gait Recognition

JIN Kun, CHEN Shao-chang   

  1. School of Electronic Engineering,Naval University of Engineering,Wuhan 430000,China
  • Online:2019-06-14 Published:2019-07-02

摘要: 步态识别是一种生物特征识别技术,目的是通过人们走路的姿态进行身份识别。与其他的生物识别技术相比,步态识别具有非接触、远距离和不容易伪装的优点。步态识别自1994年被提出以来发展迅速,而随着算法的提速,步态识别在智能视频监控领域比图像识别更具优势。文中通过对步态识别的原理进行归纳总结,介绍其在识别各阶段的应用;对数据库进行总结和整理,提出了多特征融合识别的方法和前景,展望了身份识别问题的未来发展方向。生物雷达技术的产生和应用将为步态识别提供更多可能。

关键词: 步态识别, 多特征融合识别, 人脸识别, 生物雷达技术, 数据库

Abstract: Gait recognition is a kind of biometrics technology,which aims to identify people by their walking posture.Compared with other biometrics technology,gait recognition has the advantages of non-contact,long distance and easy to disguise.Since gait recognition was proposed in 1994,it has developed rapidly.With the acceleration of the algorithm,gait recognition has more advantages than image recognition in the field of intelligent video surveillance.This paper summarized the principle of gait recognition and introduced its application in various stages of recognition,and then summarized and sorted out the database,put forward the methods and prospects of multi-feature fusion recognition,and looked forward to the future development direction of identity recognition.The generation and application of bioradar will provide more possibilities for gait recognition.

Key words: Biological radar technology, Data base, Face recognition, Gait recognition, Multi-feature fusion recognition

中图分类号: 

  • TP391
[1]WANG L,NING H Z,TAN T N,et al.Fusion of static and dynamic body biometrics for gait recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(2):149-158.
[2]于仕琪.多视角步态分析与识别.北京:中国科学院自动化研究所,2007.
[3]SHAKHNAROVICH G,LEE L,DARRELL T.Integrated face and gait recognition from multiple views[C]∥Proc.of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Hawaii,USA,2001:1439-I446.
[4]王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160.
[5]徐万江.基于特征子空间的跨视角步态识别研究[D].苏州:苏州大学,2017.
[6]KUMAR H P M,NAGENDRASWAMY H S.Gait recognition:An approach based on interval valued features[C]∥2013 International Conference on ComputerCommunication and Informa-tics(ICCCI).IEEE,2013:1-6.
[7]BOUCHRIKA I,NIXON M S.Exploratory factor analysis of gait recognition[C]∥2008 the 8th IEEE International Confe-rence on Automatic Face & Gesture Recognition,FG ’08,IEEE,2008:1-6.
[8]王阳.基于特征点匹配的步态识别[J].传感器与微系统,2018(1):137-140.
[9]SUN J,WANG Y,LI J,et al.View-invariant gait recognition based on kinect skeleton feature[J].Multimedia Tools & Applications,2018,77(19):24909-24935.
[10]LISHANI A O,BOUBCHIR L,KHALIFA E,et al.Human gait recognition using GEI-based local multi-scale feature descriptors[J].Multimedia Tools & Applications,2018(13):1-16.
[11]刘冠群,罗桂琼,谭平.基于类Haar特征模板匹配的多镜头步态识别算法[J].计算机工程,2017,43(12):231-236.
[12]赵喜玲,张晓惠.基于动态特征和静态特征融合的步态识别方法[J].湘潭大学自科学报,2017(4):89-91.
[13]徐守坤,邱亮,石林,等.基于 SEF-GHEI 及协同表示的步态识别研究[J].计算机应用研究,2019,36(7):294-297,321.
[14]叶波,文玉梅.基于步态的人身份识别技术综述[J].计算机应用,2005,25(11):2577-2580.
[15]FIGUEIREDO J,SANTOS C P,MORENO J C.Automatic recognition of gait patterns in human motor disorders using machine learning:A review[J].Medical Engineering & Physics,2018,53:1-12.
[16]LITTLE J J ,BOYD JE.Recognizing people by their gait:the shape of motion[J].Videre:Journal of Computer Vision Research,1998,1(2):2-32.
[17]HAYFRON-ACQUAH J B,NIXON M S,CARTER J N.Automatic gait recognition by symmetry analysis[C]∥Proc.of 3rd International Conference on Audio and Video Based Biometric Person Authentication.Halmstad,Sweden,2001:272-277.
[18]Center for Biometrics and Chinese Academy of Scienses Security Research,Institute of Automation[OL].http://www.cbsr.ia.ac.cn.
[19]TANAWONGSUWAN R,BOBICK A.Performance Ana1yrsis of Time Distance Gait Parameters under Diferent Speeds[C]∥Proc of the 4th International Conference on Audio- and Video-Based Biometric Person Authentication.Guildford,UK,2003:715-724.
[20]CUNTOOR N,KALE A,CHELAPPA R.Combining Multiple EvidencesFor Gait Recognition[C]∥Proc ofthe International Conference on Acoustics,Speech and Signal Processing.Hang Kong,China,2003:33-36 [21]CHALIDABHONGSE T,KRUGER V,CHELAPPA R.The UMD Database for Human Identification at a Distance[R].Technical Report.CollegePark,USA:University of Maryland,2001.
[22]GROSS R,SHI J.The CMU Motion of Body(MoBo) Database[R].Technical Report,CMU-RI-TR-01-18.Pittsburgh,USA:Carngie Mellon University,2001.
[23]NIXON M,CARTER J,SHUFLER J,et al.Experimental Plan for Automatic Gait Recognition[R].Technical Report.Southampton,UK:University of Southampton,2001.
[24]SARKAR S.The Human ID Gait Challenge Problem:DataSets,Performance and Analysis.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,7(2):162-177.
[25]YU S Q,WANG L,HU W M,et al.Gait Analysis for Human Identification in Frequency Domain[C]∥Proc.of 3rd International Conference on Image and Graphics.Hong Kong,China,2004:282-285.
[26]YU S Q,TAN D L,HUANG K Q,et al.Reducing the effect of noise on human contour in gait recognition[C]∥Proc.of 2nd IAPR International Conference on Biometrics.Seoul,Korea,2007.
[27]TAN D L,YU S Q,HUANG K Q,et al.Walker recognition without gait cycle estimation[C]∥Proc.of The 2nd Internatio-nal Conference on Biometrics.Seoul,Korea,2007:222-231.
[28]SEELY R D,SAM ANGOOEI S,LEE M,et al.The University of Southampton Multi-Biometfic Tunnel and Introducing a Novel 3D Gait Dataset[C]∥Proc of the 2nd IEEE International Conference on Biometrics:Theory,Applications and Systems.Washington,USA,2008:1-6.
[29]刘若水,关羽,杨薇.人脸与步态识别技术在人物识别与追踪领域的应用[J].河南科学,2017,35(8):1232-1236.
[30]李轶.基于步态与人脸融合的远距离身份识别关键技术研究[D].天津:天津大学,2011.
[31]陈佩瑶.监控视频下融合多生物特征的身份识别研究[D].华北电力大学,2015.
[32]余杰.基于视频的人体目标跟踪与识别技术研究[D].成都:电子科技大学,2016.
[33]PUNYANI P,GUPTA R,KUMAR A.Human age-estimation system based on double-level feature fusion of face and gait images[J].International Journal of Image & Data Fusion,2018(4):1-15.
[34]HOU X,LIU Z.Fusion of Face and Gait for Human Recognition in Video Sequences[C]∥International Conference on Information Technology and Computer Science.IEEE,2008:577-580.
[35]王帅杰,李钊,王梦梦,等.基于生物雷达的人体步态非接触检测技术研究进展[J].国际生物医学工程杂志,2017,40(1):46.
[36]王帅杰,李钊,张华,等.一种基于连续波生物雷达的人体步态非接触检测系统[J].中国医疗设备,2016,31(12):26-30.
[37]GEISHEIMER J L,MARSHALL W S,GRENEKER E.A continuous-wave(CW) radar for gait analysis:Signals[C]∥35th Asilomar Conference on Signals,Systems & Computers.Pacific Grove,United States:IEEE,2001:834-838.
[38]OTERO M.Application of a continuous wave radar for human gait recognition[C]∥Signal Processing,Sensor Fusion,and Targetm Recognition.Orlando,United States:International Society for Optics and Photonics,2005:538-548.
[39]ZHANG J.Basic gait analysis based on continuous wave radar[J].Gait & Posture,2012,36(4):667-671.
[40]王曦泽.连续波生物雷达的关键技术研究[D].北京:中国科学院大学,2014.
[41]薛召军,靳静娜,明东,等.步态识别研究现状与进展[J].生物医学工程学杂志,2008(5):1217-1221.
[1] 王润安, 邹兆年.
基于物理操作级模型的查询执行时间预测方法
Query Performance Prediction Based on Physical Operation-level Models
计算机科学, 2022, 49(8): 49-55. https://doi.org/10.11896/jsjkx.210700074
[2] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[3] 黄璞, 沈阳阳, 杜旭然, 杨章静.
基于局部约束特征线表示的人脸识别
Face Recognition Based on Locality Constrained Feature Line Representation
计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169
[4] 程祥鸣, 邓春华.
基于无标签知识蒸馏的人脸识别模型的压缩算法
Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation
计算机科学, 2022, 49(6): 245-253. https://doi.org/10.11896/jsjkx.210400023
[5] 魏勤, 李瑛娇, 娄平, 严俊伟, 胡辑伟.
基于边云协同的人脸识别方法研究
Face Recognition Method Based on Edge-Cloud Collaboration
计算机科学, 2022, 49(5): 71-77. https://doi.org/10.11896/jsjkx.210300222
[6] 梁静茹, 鄂海红, 宋美娜.
基于属性图模型的领域知识图谱构建方法
Method of Domain Knowledge Graph Construction Based on Property Graph Model
计算机科学, 2022, 49(2): 174-181. https://doi.org/10.11896/jsjkx.210500076
[7] 何嘉玉, 黄宏博, 张红艳, 孙牧野, 刘亚辉, 周哲海.
基于深度学习的单幅图像三维人脸重建研究综述
Review of 3D Face Reconstruction Based on Single Image
计算机科学, 2022, 49(2): 40-50. https://doi.org/10.11896/jsjkx.210500215
[8] 陈长伟, 周晓峰.
快速局部协同表示分类器及其在人脸识别中的应用
Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition
计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155
[9] 温荷, 罗频捷.
基于改进脉冲耦合神经网络的动态人脸识别
Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network
计算机科学, 2021, 48(6A): 85-88. https://doi.org/10.11896/jsjkx.200600172
[10] 黄梅根, 刘川, 杜欢, 刘佳乐.
基于知识图谱的认知诊断模型及其在教辅中的应用研究
Research on Cognitive Diagnosis Model Based on Knowledge Graph and Its Application in Teaching Assistant
计算机科学, 2021, 48(6A): 644-648. https://doi.org/10.11896/jsjkx.200700163
[11] 刘蕴涵, 沙朝锋, 牛军钰.
基于Stack Overflow的数据库相关主题分析
Analysis of Topics on Database Systems in Stack Overflow
计算机科学, 2021, 48(6): 48-56. https://doi.org/10.11896/jsjkx.200800217
[12] 白子轶, 毛懿荣, 王瑞平.
视频人脸识别进展综述
Survey on Video-based Face Recognition
计算机科学, 2021, 48(3): 50-59. https://doi.org/10.11896/jsjkx.210100210
[13] 范鹏浩, 黄国锐, 金培权.
NVRC:一种面向NVM的写限制日志方案
NVRC:Write-limited Logging for Non-volatile Memory
计算机科学, 2021, 48(3): 130-135. https://doi.org/10.11896/jsjkx.200900071
[14] 刘立成, 徐一凡, 谢贵才, 段磊.
面向NoSQL数据库的JSON文档异常检测与语义消歧模型
Outlier Detection and Semantic Disambiguation of JSON Document for NoSQL Database
计算机科学, 2021, 48(2): 93-99. https://doi.org/10.11896/jsjkx.200900039
[15] 陆要要, 袁家斌, 何珊, 王天星.
基于超分辨率重建的低质量视频人脸识别方法
Low-quality Video Face Recognition Method Based on Super-resolution Reconstruction
计算机科学, 2021, 48(11A): 295-302. https://doi.org/10.11896/jsjkx.201200159
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!