计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 342-349.doi: 10.11896/jsjkx.210400096
徐建民1, 孙朋1, 吴树芳2
XU Jian-min1, SUN Peng1, WU Shu-fang2
摘要: 微博等在线社交平台的迅猛发展,促进了各种谣言信息的广泛传播,进而给社会秩序带来了潜在的威胁。微博谣言检测能够有效遏制谣言的传播,对净化网络环境、维护社会安定具有重要意义。针对传统谣言检测模型仅考虑用户、内容、传播统计等特征,忽略了谣言传播过程中用户的影响力、情感反馈等特征随转发和评论关系变化而变化的结构问题,提出了一种基于微博信息传播树的路径树核谣言检测模型。所提模型将用户的影响力、情感反馈和内容等特征嵌入传播树的节点中,通过计算传播树中从根节点到叶子节点的路径相似度,得到微博信息传播树结构之间的相似度,进而使用基于传播路径树核的支持向量机实现对微博谣言的检测。实验结果显示,所提模型的准确率达到93.5%,其效果优于未考虑传播路径结构特征的谣言检测模型。
中图分类号:
[1] KNAPP R H.A psychology of rumor[J].Public Opinion Quarterly,1944,8(1):22-37. [2] CHEN YF,LI Z Y,LIANG X,et al.Review on Rumor Detection of Online Social Networks[J].Chinese Journal of Computers,2018,41(7):1648-1677. [3] BRATU S.The fake news sociology of COVID-19 pandemicfear:Dangerously inaccurate beliefs,emotional contagion,and conspiracy ideation[J].Linguistic and Philosophical Investigations,2020 (19):128-134. [4] MA B,LIN D,CAO D.Content representation for microblog rumor detection[M]//Advances in Computational Intelligence Systems.Cham:Springer,2017:245-251. [5] ZUBIAGA A,LIAKATA M,PROCTER R.Learning reporting dynamics during breaking news for rumour detection in social media[J].arXiv:1610.07363,2016. [6] CHANG C,ZHANG Y,SZABO C,et al.Extreme user and poli-tical rumor detection on twitter[C]//International Conference on Advanced Data Mining and Applications.Cham:Springer,2016:751-763. [7] LIANG G,HE W,XU C,et al.Rumor identification in microblogging systems based on users’ behavior[J].IEEE Transactions on Computational Social Systems,2015,2(3):99-108. [8] MA J,GAO W,WEI Z,et al.Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1751-1754. [9] WU K,YANG S,ZHU K Q.False rumors detection on sina weibo by propagation structures[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE,2015:651-662. [10] MA J,GAO W,WONG K F.Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:708-717. [11] CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684. [12] QAZVINIAN V,ROSENGREN E,RADEV D,et al.Rumor has it:Identifying misinformation in microblogs[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing.2011:1589-1599. [13] YANG F,LIU Y,YU X,et al.Automatic detection of rumor on Sina Weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7. [14] LIANG G,YANG J,XU C.Automatic rumors identification on Sina Weibo[C]//2016 12th International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery(ICNC-FSKD).IEEE,2016:1523-1531. [15] KWON S,CHA M,JUNG K.Rumor Detection over VaryingTime Windows[J/OL].https://www.researchgate.net/publication/311413402_Rumor_detection_over_varying_time_windows. [16] WANG T,LI M.Research on Comment Text Mining Based on LDA Model and Semantic Network[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(4):9-16. [17] WANG Y,HE Y M,CHEN H X,et al.RHS-CNN:A CNN Text Classification Model Based on Regularized Hierarchical Softmax[J].Journal of Chongqing University of Technology(Natural Science),2020,34(5):187-195. [18] MA J,GAO W,MITRA P,et al.Detecting rumors from microblogs with recurrent neural networks[C]//International Joint Conference on Artificial Intelligence.2016. [19] ROHIT K K,ANURAG G,PRATIK N,et al.FNDNet-A deep convolutional neural network for fake news detection[J].Cognitive Systems Research,2020,61:32-44. [20] BHATT G,SHARMA A,SHARMA S,et al.Combining neural,statistical and external features forfake news stance identification[C]//Companion Proceedings of the The Web Confe-rence.2018:1353-1357. [21] ZHANG S Q,DU S D,ZHANG X B,et al.Social rumor detection method basedon multimodalfusion[J].Computer Science,2021,48(5):117-123. [22] PRIYANKA M,DINESH K V.Fake news,rumor,information pollution in social media and web:A contemporary survey of state-of-the-arts,challenges and opportunities[J/OL].Expert Systems With Applications.https://www.researchgate.net/publication/336271325_Fake_News_Rumor_Information_Pollution_in_Social_Media_and_Web_A_Contemporary_Survey_of_State-of-the-arts_Challenges_and_Opportunities. [23] VOSOUGHI S,ROY D,ARAL S.The spread of true and false news online[J].Science,2018,359(6380):1146-1151. [24] KHOO L M S,CHIEU H L,QIAN Z,et al.Interpretable rumor detection in microblogs by attending to user interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(5):8783-8790. [25] ZW A,DP A,JC A,et al.Rumor detection based on propagation graph neural network with attention mechanism[J/OL].Expert Systems with Applications.https://www.researchgate.net/publication/341951109_Rumor_Detection_Based_On_Propagation_Graph_Neural_Network_With_Attention_Mechanism. [26] BIAN T,XIAO X,XU T,et al.Rumor detection on social media with bi-directional graph convolutional networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020,34(1):549-556. [27] LI Y H,ZHENG C M,WANG W L,et al.A Multi-Dimensional and Multi-Emotion Analysis Method for Mixed Language Texts[J].Computer Engineering,2020,46(12):113-119,141. [28] QIN Y,MA J,GAO S.Efficient influence maximization underTSCM:a suitable diffusion model in online social networks[J].Soft Computing,2017,21(4):827-838. [29] CHEN X D.Research on sentiment tendency analysis of Chinese Weibo based on sentiment dictionary[D].Wuhan:Huazhong University of Science and Technology,2012. [30] DONG Z,DONG Q.HowNet knowledge database[J/OL].[2013-07-25].http://www,keenage,com. [31] XU F,SHENG V S,WANG M.Near real-time topic-driven rumor detection in source microblogs[J/OL].Knowledge-Based Systems.https://www.researchgate.net/publication/343791225_Near_real-time_topic-driven_rumor_detection_in_source_microblogs. [32] QI C,CHEN H C,YU H T.Weibo user influence evaluation method based on comprehensive analysis of user behavior[J].Application Research of Computers,2014,31(7):2004-2007. [33] MIHALCEA R,STRAPPARAVA C.The lie detector:Explorationsin the automatic recognition of deceptive language[C]//Proceedings of the ACL-IJCNLP 2009 Conference Short Papers.2009:309-312. [34] ZHAO Z,RESNICK P,MEI Q.Enquiring minds:Early detec-tion of rumors in social media from enquiry posts[C]//Procee-dings of the 24th International Conference on World Wide Web.2015:1395-1405. [35] YANG F,LIU Y,YU X,et al.Automatic detection of rumor on sinaweibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7. [36] KWON S,CHA M,JUNG K,et al.Prominent features of rumor propagation in online social media[C]//2013 IEEE 13th International Conference on Data Mining.IEEE,2013:1103-1108. [37] GUO H,CAO J,ZHANG Y,et al.Rumor detection with hierar-chical social attention network[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:943-951. [38] MA J,GAO W,WONG K F.Rumor detection on twitter with tree-structured recursive neural networks[C]//Association for Computational Linguistics.2018:1980-1989. [39] WU S F,ZHU J.Research on hot topics in Internet public opinion[M].Beijing:Science Press,2020. |
[1] | 王中元, 刘惊雷. 基于二阶近邻的核子空间聚类 Kernel Subspace Clustering Based on Second-order Neighbors 计算机科学, 2021, 48(6): 86-95. https://doi.org/10.11896/jsjkx.200800180 |
[2] | 朱颖雯, 杨君. 基于欧拉核的数据流聚类算法 Euler Kernel-based Data Stream Clustering Algorithm 计算机科学, 2019, 46(12): 74-82. https://doi.org/10.11896/jsjkx.190600158 |
[3] | 孙汉博,冯国灿. 基于改进的Porter Stemmer词干提取与核方法的垃圾邮件过滤算法 Spam Filter Algorithm with Improved Porter Stemmer and Kernels Methods 计算机科学, 2017, 44(Z6): 61-67. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.012 |
[4] | 龚劬,许凯强. 有监督的无参数核局部保持投影及人脸识别 Parameter-less Supervised Kernel Locality Preserving Projection and Face Recognition 计算机科学, 2016, 43(9): 301-304. https://doi.org/10.11896/j.issn.1002-137X.2016.09.060 |
[5] | 郑建炜,孔晨辰,王万良,邱虹,章杭科. 有监督核化邻域投影分析算法 Kernel-based Supervised Neighborhood Projection Analysis Algorithm 计算机科学, 2016, 43(6): 312-315. https://doi.org/10.11896/j.issn.1002-137X.2016.06.062 |
[6] | 王裴岩,蔡东风. 一种基于核距离的核函数度量方法 Distance-based Kernel Evaluation Measure 计算机科学, 2014, 41(2): 72-75. |
[7] | 王昕,刘颖,范九伦. 基于多核Fisher判别分析的人脸特征提取 Face Feature Extraction Based on Weighted Multiple Kernel Fisher Discriminant Analysis 计算机科学, 2012, 39(9): 262-265. |
[8] | 方益民,张玲,孙为民,徐保国. 求解非正定核Huber-SVR的SMO算法 SMO Algorithm for Resolving Huber-SVR with Non-positive Kernels 计算机科学, 2010, 37(7): 212-216. |
[9] | . 动态SVDD算法及其应用 计算机科学, 2009, 36(3): 156-157. |
[10] | . 基于核的自适应聚类及其在入侵检测中的应用 计算机科学, 2008, 35(12): 190-191. |
[11] | 贾磊 廖士中. 超核函数支持向量机 计算机科学, 2008, 35(12): 148-150. |
[12] | . 基于核的PP主成分分析及其在离群聚类中的应用 计算机科学, 2007, 34(9): 131-134. |
[13] | 奚建清 郭玉彬 汤德佑. 数据基因:数据的进化过程管理模型 计算机科学, 2007, 34(1): 12-16. |
[14] | . 核函数的性质及其构造方法 计算机科学, 2006, 33(6): 172-174. |
[15] | 朱美琳 刘向东 陈世福. 核方法在人脸识别中的应用 计算机科学, 2003, 30(5): 82-84. |
|