计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 342-349.doi: 10.11896/jsjkx.210400096

• 信息安全 • 上一篇    下一篇

传播路径树核学习的微博谣言检测方法

徐建民1, 孙朋1, 吴树芳2   

  1. 1 河北大学网络空间安全与计算机学院 河北 保定 071002
    2 河北大学管理学院 河北 保定 071002
  • 收稿日期:2021-04-11 修回日期:2021-10-23 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 吴树芳(shufang_44@126.com)
  • 作者简介:(hbuxjm@hbu.cn)
  • 基金资助:
    国家社会科学基金(17BTQ068)

Microblog Rumor Detection Method Based on Propagation Path Tree Kernel Learning

XU Jian-min1, SUN Peng1, WU Shu-fang2   

  1. 1 School of Cyberspace Security and Computer,Hebei University,Baoding,Hebei 071002,China
    2 School of Management,Hebei University,Baoding,Hebei 071002,China
  • Received:2021-04-11 Revised:2021-10-23 Online:2022-06-15 Published:2022-06-08
  • About author:XU Jian-min,born in 1966,Ph.D,professor,Ph.D supervisor.His main research interests include information retrieval,public opinion monitoring and online social network analysis.
    WU Shu-fang,born in 1979,Ph.D,professor,Ph.D supervisor.Her main research interests include information processing and online social network analysis.
  • Supported by:
    National Social Science Foundation of China(17BTQ068).

摘要: 微博等在线社交平台的迅猛发展,促进了各种谣言信息的广泛传播,进而给社会秩序带来了潜在的威胁。微博谣言检测能够有效遏制谣言的传播,对净化网络环境、维护社会安定具有重要意义。针对传统谣言检测模型仅考虑用户、内容、传播统计等特征,忽略了谣言传播过程中用户的影响力、情感反馈等特征随转发和评论关系变化而变化的结构问题,提出了一种基于微博信息传播树的路径树核谣言检测模型。所提模型将用户的影响力、情感反馈和内容等特征嵌入传播树的节点中,通过计算传播树中从根节点到叶子节点的路径相似度,得到微博信息传播树结构之间的相似度,进而使用基于传播路径树核的支持向量机实现对微博谣言的检测。实验结果显示,所提模型的准确率达到93.5%,其效果优于未考虑传播路径结构特征的谣言检测模型。

关键词: 传播路径, 传播树, 核方法, 微博谣言检测

Abstract: The rapid development of online social platforms such as microblog promotes the widespread propagation of various rumors information,thereby posing potential threats to social order.Rumor detection on microblog can effectively curb the spread of rumors and is of great significance for purifying the network environment and maintaining social stability.In view of the fact that the traditional rumor detection model only considers the characteristics of users,contents and communication statistics,and ignores the structural problem that the characteristics of users′ influence and emotional feedback increase with the forwarding and comment relationship in the process of rumor communication,a path tree kernel rumor automatic detection model based on the microblog information propagation tree is proposed in this paper.It embeds users’ influence,emotional feedback,contents into the nodes ofpropagation tree.By calculating the path similarity from the root node to the leaf node in propagation tree,the similarity between the microblog information propagation tree structure is obtained.Furthermore,the model uses the support vector machine classifier based on the propagation path tree kernel todetect microblog rumors.Experimental results show that the accuracy of the proposed model reaches 93.5%,which is better than that of the rumor detection models without considering the structure of propagation path.

Key words: Kernel method, Microblog rumor detection, Propagation path, Propagation tree

中图分类号: 

  • TP391
[1] KNAPP R H.A psychology of rumor[J].Public Opinion Quarterly,1944,8(1):22-37.
[2] CHEN YF,LI Z Y,LIANG X,et al.Review on Rumor Detection of Online Social Networks[J].Chinese Journal of Computers,2018,41(7):1648-1677.
[3] BRATU S.The fake news sociology of COVID-19 pandemicfear:Dangerously inaccurate beliefs,emotional contagion,and conspiracy ideation[J].Linguistic and Philosophical Investigations,2020 (19):128-134.
[4] MA B,LIN D,CAO D.Content representation for microblog rumor detection[M]//Advances in Computational Intelligence Systems.Cham:Springer,2017:245-251.
[5] ZUBIAGA A,LIAKATA M,PROCTER R.Learning reporting dynamics during breaking news for rumour detection in social media[J].arXiv:1610.07363,2016.
[6] CHANG C,ZHANG Y,SZABO C,et al.Extreme user and poli-tical rumor detection on twitter[C]//International Conference on Advanced Data Mining and Applications.Cham:Springer,2016:751-763.
[7] LIANG G,HE W,XU C,et al.Rumor identification in microblogging systems based on users’ behavior[J].IEEE Transactions on Computational Social Systems,2015,2(3):99-108.
[8] MA J,GAO W,WEI Z,et al.Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1751-1754.
[9] WU K,YANG S,ZHU K Q.False rumors detection on sina weibo by propagation structures[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE,2015:651-662.
[10] MA J,GAO W,WONG K F.Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:708-717.
[11] CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684.
[12] QAZVINIAN V,ROSENGREN E,RADEV D,et al.Rumor has it:Identifying misinformation in microblogs[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing.2011:1589-1599.
[13] YANG F,LIU Y,YU X,et al.Automatic detection of rumor on Sina Weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7.
[14] LIANG G,YANG J,XU C.Automatic rumors identification on Sina Weibo[C]//2016 12th International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery(ICNC-FSKD).IEEE,2016:1523-1531.
[15] KWON S,CHA M,JUNG K.Rumor Detection over VaryingTime Windows[J/OL].https://www.researchgate.net/publication/311413402_Rumor_detection_over_varying_time_windows.
[16] WANG T,LI M.Research on Comment Text Mining Based on LDA Model and Semantic Network[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(4):9-16.
[17] WANG Y,HE Y M,CHEN H X,et al.RHS-CNN:A CNN Text Classification Model Based on Regularized Hierarchical Softmax[J].Journal of Chongqing University of Technology(Natural Science),2020,34(5):187-195.
[18] MA J,GAO W,MITRA P,et al.Detecting rumors from microblogs with recurrent neural networks[C]//International Joint Conference on Artificial Intelligence.2016.
[19] ROHIT K K,ANURAG G,PRATIK N,et al.FNDNet-A deep convolutional neural network for fake news detection[J].Cognitive Systems Research,2020,61:32-44.
[20] BHATT G,SHARMA A,SHARMA S,et al.Combining neural,statistical and external features forfake news stance identification[C]//Companion Proceedings of the The Web Confe-rence.2018:1353-1357.
[21] ZHANG S Q,DU S D,ZHANG X B,et al.Social rumor detection method basedon multimodalfusion[J].Computer Science,2021,48(5):117-123.
[22] PRIYANKA M,DINESH K V.Fake news,rumor,information pollution in social media and web:A contemporary survey of state-of-the-arts,challenges and opportunities[J/OL].Expert Systems With Applications.https://www.researchgate.net/publication/336271325_Fake_News_Rumor_Information_Pollution_in_Social_Media_and_Web_A_Contemporary_Survey_of_State-of-the-arts_Challenges_and_Opportunities.
[23] VOSOUGHI S,ROY D,ARAL S.The spread of true and false news online[J].Science,2018,359(6380):1146-1151.
[24] KHOO L M S,CHIEU H L,QIAN Z,et al.Interpretable rumor detection in microblogs by attending to user interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(5):8783-8790.
[25] ZW A,DP A,JC A,et al.Rumor detection based on propagation graph neural network with attention mechanism[J/OL].Expert Systems with Applications.https://www.researchgate.net/publication/341951109_Rumor_Detection_Based_On_Propagation_Graph_Neural_Network_With_Attention_Mechanism.
[26] BIAN T,XIAO X,XU T,et al.Rumor detection on social media with bi-directional graph convolutional networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020,34(1):549-556.
[27] LI Y H,ZHENG C M,WANG W L,et al.A Multi-Dimensional and Multi-Emotion Analysis Method for Mixed Language Texts[J].Computer Engineering,2020,46(12):113-119,141.
[28] QIN Y,MA J,GAO S.Efficient influence maximization underTSCM:a suitable diffusion model in online social networks[J].Soft Computing,2017,21(4):827-838.
[29] CHEN X D.Research on sentiment tendency analysis of Chinese Weibo based on sentiment dictionary[D].Wuhan:Huazhong University of Science and Technology,2012.
[30] DONG Z,DONG Q.HowNet knowledge database[J/OL].[2013-07-25].http://www,keenage,com.
[31] XU F,SHENG V S,WANG M.Near real-time topic-driven rumor detection in source microblogs[J/OL].Knowledge-Based Systems.https://www.researchgate.net/publication/343791225_Near_real-time_topic-driven_rumor_detection_in_source_microblogs.
[32] QI C,CHEN H C,YU H T.Weibo user influence evaluation method based on comprehensive analysis of user behavior[J].Application Research of Computers,2014,31(7):2004-2007.
[33] MIHALCEA R,STRAPPARAVA C.The lie detector:Explorationsin the automatic recognition of deceptive language[C]//Proceedings of the ACL-IJCNLP 2009 Conference Short Papers.2009:309-312.
[34] ZHAO Z,RESNICK P,MEI Q.Enquiring minds:Early detec-tion of rumors in social media from enquiry posts[C]//Procee-dings of the 24th International Conference on World Wide Web.2015:1395-1405.
[35] YANG F,LIU Y,YU X,et al.Automatic detection of rumor on sinaweibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7.
[36] KWON S,CHA M,JUNG K,et al.Prominent features of rumor propagation in online social media[C]//2013 IEEE 13th International Conference on Data Mining.IEEE,2013:1103-1108.
[37] GUO H,CAO J,ZHANG Y,et al.Rumor detection with hierar-chical social attention network[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:943-951.
[38] MA J,GAO W,WONG K F.Rumor detection on twitter with tree-structured recursive neural networks[C]//Association for Computational Linguistics.2018:1980-1989.
[39] WU S F,ZHU J.Research on hot topics in Internet public opinion[M].Beijing:Science Press,2020.
[1] 王中元, 刘惊雷.
基于二阶近邻的核子空间聚类
Kernel Subspace Clustering Based on Second-order Neighbors
计算机科学, 2021, 48(6): 86-95. https://doi.org/10.11896/jsjkx.200800180
[2] 朱颖雯, 杨君.
基于欧拉核的数据流聚类算法
Euler Kernel-based Data Stream Clustering Algorithm
计算机科学, 2019, 46(12): 74-82. https://doi.org/10.11896/jsjkx.190600158
[3] 孙汉博,冯国灿.
基于改进的Porter Stemmer词干提取与核方法的垃圾邮件过滤算法
Spam Filter Algorithm with Improved Porter Stemmer and Kernels Methods
计算机科学, 2017, 44(Z6): 61-67. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.012
[4] 龚劬,许凯强.
有监督的无参数核局部保持投影及人脸识别
Parameter-less Supervised Kernel Locality Preserving Projection and Face Recognition
计算机科学, 2016, 43(9): 301-304. https://doi.org/10.11896/j.issn.1002-137X.2016.09.060
[5] 郑建炜,孔晨辰,王万良,邱虹,章杭科.
有监督核化邻域投影分析算法
Kernel-based Supervised Neighborhood Projection Analysis Algorithm
计算机科学, 2016, 43(6): 312-315. https://doi.org/10.11896/j.issn.1002-137X.2016.06.062
[6] 王裴岩,蔡东风.
一种基于核距离的核函数度量方法
Distance-based Kernel Evaluation Measure
计算机科学, 2014, 41(2): 72-75.
[7] 王昕,刘颖,范九伦.
基于多核Fisher判别分析的人脸特征提取
Face Feature Extraction Based on Weighted Multiple Kernel Fisher Discriminant Analysis
计算机科学, 2012, 39(9): 262-265.
[8] 方益民,张玲,孙为民,徐保国.
求解非正定核Huber-SVR的SMO算法
SMO Algorithm for Resolving Huber-SVR with Non-positive Kernels
计算机科学, 2010, 37(7): 212-216.
[9] .
动态SVDD算法及其应用

计算机科学, 2009, 36(3): 156-157.
[10] .
基于核的自适应聚类及其在入侵检测中的应用

计算机科学, 2008, 35(12): 190-191.
[11] 贾磊 廖士中.
超核函数支持向量机

计算机科学, 2008, 35(12): 148-150.
[12] .
基于核的PP主成分分析及其在离群聚类中的应用

计算机科学, 2007, 34(9): 131-134.
[13] 奚建清 郭玉彬 汤德佑.
数据基因:数据的进化过程管理模型

计算机科学, 2007, 34(1): 12-16.
[14] .
核函数的性质及其构造方法

计算机科学, 2006, 33(6): 172-174.
[15] 朱美琳 刘向东 陈世福.
核方法在人脸识别中的应用

计算机科学, 2003, 30(5): 82-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!