计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 322-328.doi: 10.11896/jsjkx.220400170
李玉阁, 王天荆, 沈航, 罗小康, 白光伟
LI Yuge, WANG Tianjing, SHEN Hang, LUO Xiaokang, BAI Guangwei
摘要: 第五代移动通信系统(5G)通过非正交多址(NOMA)技术对无线通信资源进行非正交复用,以过载的方式提高了频谱利用效率和系统容量。NOMA系统采用免授权的方式减少了系统流程和信令开销,但是接收端需要进行多用户检测。基站利用活跃用户的稀疏特性,采用压缩感知(CS)重构算法恢复活跃用户的混合稀疏向量,实现了高效的多用户检测。但5G网络中基站密集部署增强了相邻小区间的干扰,因而增加了CS检测难度及降低了检测精度。针对免授权NOMA系统中多用户检测存在干扰的问题,提出了一种基于变步长自适应匹配追踪的抗干扰多用户检测算法。在稀疏度未知的情况下,该算法以大步长快速接近、小步长精确逼近稀疏度的自适应变步长方式,实现抗干扰的活跃用户检测。仿真结果表明,在不同过载率下,所提算法的误比特率均低于传统的基于OMP,gOMP和SAMP的多用户检测算法。
中图分类号:
[1]EL A A,SINGH S K,PAN Y,et al.Block5gintell:blockchain for ai-enabled 5G networks[J].IEEE Access,2020,8:145918-145935. [2]CISCO U.Cisco annual internet report(2018-2023) white paper[EB/OL].https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html. [3]GHOSH J,RA I H,SINGH S,et al.On the comparison of optimal NOMA and OMA in a paradigm shift of emerging technologies[J].IEEE Access,2022,10:11616-11632. [4]HASAN S M,MAHATA K,HYDER M M.Uplink Grant-Free NOMA with Sinusoidal Spreading Sequences[J].IEEE Transactions on Communications,2021,69(6):3757-3770. [5]LI B,ZHENG J,GAO Y.Compressed Sensing Based Multiuser Detection of Grant-Free NOMA With Dynamic User Activity[J].IEEE Communications Letters,2021,26(1):143-147. [6]WANG J,JIANG C,KUANG L.Iterative NOMA Detection for Multiple Access in Satellite High-Mobility Communications[J].IEEE Journal on Selected Areas in Communications,2022,40(4):1101-1113. [7]HUSMANN C,JAYAWARDENA C,MAAREF A,et al.Low-Complexity SCMA detection for unsupervised user access[J].IEEE Communications Letters,2020,25(3):1019-1023. [8]DING T,YUAN X,LIEW S C.Sparsity learning-based multi-user detection in grant-free massive-device multiple access[J].IEEE Transactions on Wireless Communications,2019,18(7):3569-3582. [9]LI M,ZHOU Z G,WANG T.Multiuser Detection Scheme forSCMA Systems Based on Stability of Belief Propagation[J].Computer Science,2019,46(1):138-142. [10]WEI C,LIU H,ZHANG Z,et al.Approximate message passing-based joint user activity and data detection for NOMA[J].IEEE Communications Letters,2016,21(3):640-643. [11]HARA T,ISHIBASHI K.Low complexity uplink grant-freeNOMA based on boosted approximate message passing[C]//2019 53rd Asilomar Conference on Signals,Systems,and Computers.IEEE,2019:1877-1880. [12]ZHANG L,MENG X,WANG L,et al.Joint User Activity and Data Detection for NOMA via the Integrated Framework of Expectation Maximization and Expectation Propagation[C]//2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC).IEEE,2019:1-5. [13]KE M,GAO Z,WU Y,et al.Compressive sensing-based adaptive active user detection and channel estimation:Massive access meets massive MIMO[J].IEEE Transactions on Signal Proces-sing,2020,68:764-779. [14]ZHANG X,YANG L,DING Z,et al.Sparse vector coding-based multi-carrier NOMA for in-home health networks[J].IEEE Journal on Selected Areas in Communications,2020,39(2):325-337. [15]KIM J,WANG J,NGUYEN L T,et al.Joint sparse recoveryusing signal space matching pursuit[J].IEEE Transactions on Information Theory,2020,66(8):5072-5096. [16]SHEN B,WU H B,CUI T P,et al.An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system[J].Journal of Electronics & Information Technology,2020,42(3):621-628. [17]QIAO L,ZHANG J,GAO Z,et al.Compressive sensing basedmassive access for IoT relying on media modulation aided machine type communications[J].IEEE Transactions on Vehicular Technology,2020,69(9):10391-10396. [18]WANG Q Z,FANG D,WU G F.Multi-User detection based on sparsity adaptive matching pursuit compressive sensing for uplink grant-free non-orthogonal multiple access[J].Journal of Electronics and Information Technology,2020,42(9):2216-2222. [19]MUKHERJEE S,KIM D,LEE J.Base Station CoordinationScheme for Multi-tier Ultra-dense Networks[J].IEEE Transactions on Wireless Communications,2021,20(11):7317-7332. [20]KIM J,WANG J,SHIM B.Optimal restricted isometry condition of normalized sampling matrices for exact sparse recovery with orthogonal least squares[J].IEEE Transactions on Signal Processing,2021,69:1521-1536. [21]LI J,CHOW P,PENG Y,et al.FPGA implementation of an improved OMP for compressive sensing reconstruction[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2021,29(2):259-272. [22]ZHAO C,HWANG W L,LIN C L,et al.Greedy orthogonalmatching pursuit for subspace clustering to improve graph connectivity[J].Information Sciences,2018,459:135-148. [23]LEE D.MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit[J].IEEE Communications Letters,2016,20(10):2115-2118. [24]SHOITAN R,NOSSAIR Z,IBRAHIM I I,et al.Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix[J].Frontiers of Information Technology & Electronic Engineering,2018,19(4):503-512. [25]XU H,LI C.Massive MIMO Channel Estimation Based on Improved Variable Step Size Regular Backtracking SAMP Algorithms[C]//2019 IEEE 19th International Conference on Communication Technology(ICCT).IEEE,2019:45-49. [26]WANG X,ZHNAG Y X,HUANG Z Q.Regularized back tra-cking adaptive tracking algorithm based on variable step size[J].Journal of Electronics,2018,46(8):1829-1834. |
|