计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 184-192.doi: 10.11896/jsjkx.220900130
林韦达, 董红斌, 赵炳旭
LIN Weida, DONG Hongbin, ZHAO Bingxu
摘要: 任务定价是众包平台解决利润驱动的任务分配、最大化利润的重要步骤。然而关于工人期望的任务定价研究相对较少,现有大多数研究并不考虑工人与任务的动态需求。此外,出于工人隐私和传感器限制,获取完整的工人信息是困难的。为解决上述难题,提出了基于纳什竞价的空间众包任务定价算法。首先通过机器学习算法获取任务的价格范围,然后在价格区间上进行纳什竞价。为了解决动态供需造成的价格大幅波动问题,设计调整机制来稳定任务均价。最后为模拟纳什均衡点,采用了两种不同的梯度递减函数,来搜索匹配数最大的任务定价。分别在gMission数据集和合成数据集进行了实验,结果表明所提算法的匹配数量和任务均价分别是MCMF算法的60%和1.57倍,时间花费是MCMF算法的9.6%,验证了所提算法的有效性。
中图分类号:
[1]LI Y,XU W,YIU M L.Client-Side Service for Recommending Rewarding Routes to Mobile Crowdsourcing Workers[J].IEEE Transactions on Services Computing,2021,14(6):1995-2010. [2]TONG Y,WANG L,ZHOU Z,et al.Flexible online task assignment in real-time spatial data[J].Proceedings of the Vldb Endowment,2017,10(11):1334-1345. [3]ZHAO Y,ZHENG K,CUI Y,et al.Predictive Task Assignment in Spatial Crowdsourcing:A Data-driven Approach[C]//2020 IEEE 36th International Conference on Data Engineering(ICDE).IEEE,2020. [4]ZHOU Z,CHEN R,WANG C,et al.Dynamic pricing in profit-driven task assignment:a domain-of-influence based approach[J].International Journal of Machine Learning and Cybernetics,2021,12(2021):1015-1030. [5]GUO B,YAN L,WU W,et al.ActiveCrowd:A Framework for Optimized Multi-Task Allocation in Mobile Crowdsensing Systems[J].IEEE Transactions on Human-Machine Systems,2017,(3):392-403. [6]FARBER H S.Why you can't find a taxi in the rain and other labor supply lessons from cab drivers[J].The Quarterly Journal of Economics,2015,130(4):1975-2026. [7]CHEN Z,FU R,ZHAO Z,et al.gMission:A general spatialcrowdsourcing platform[J].Proceedings of the Vldb Endowment,2014,7(13):1629-1632. [8]TONG Y X,CHEN L,SHAHABI C.Spatial crowdsourcing:challenges,techniques,and applications[C]//Proceedings of the VLDB Endowment.2017:1988-1991. [9]TONG Y,CHEN L,SHAHABI C.Spatial crowdsourcing:challenges,techniques,and applications[C]//Very Large Data Bases.VLDB Endowment,2017. [10]LI X H,DONG H B.Matching modeling and optimization me-thod of ride-sharing trip based on E-CARGO model [J].Computer Applications,2022,42(3):778-782. [11]PAN Q X,YIN Z X,DONG H B,et al.Task Allocation Algorithm for Space-Time Crowdsourcing Based on Tabu Search [J].Journal of Intelligent Systems,2020,15(6):1040-1048. [12]GUAN S.Analysis of Optimal Pricing Model of Crowdsourcing Platform Based on Cluster and Proportional Sharing[C]//2018 6th International Symposium on Computational and Business Intelligence(ISCBI).2018. [13]WANG H,NGUYEN D N,HOANG D T,et al.Real-TimeCrowdsourcing Incentive for Radio Environment Maps:A Dynamic Pricing Approach[C]//2018 IEEE Global Communications Conference(GLOBECOM).IEEE,2019. [14]TONG Y,WANG L,ZHOU Z,et al.Dynamic pricing in spatial crowdsourcing:A matching-based approach[C]//Proceedings ACM SIGMOD International Conference on Management of Data.2018:773-788. [15]孙雪峰,张成堂,朱林.考虑企业社会责任的双渠道闭环供应链定价决策研究[J].重庆工商大学学报(自然科学版),2022,39(4):51-59. [16]XIA H,ZHANG R,CHENG X,et al.Two-Stage Game Design of Payoff Decision-Making Scheme for Crowdsourcing Dilemmas[J].IEEE/ACM Transactions on Networking,2020,28(6):2741-2754. [17]PENG J,ZHU Y,SHU W,et al.When data contributors meet multiple crowdsourcers:Bilateral competition in mobile crowdsourcing[J].Computer Networks,2016,95(11):1-14. [18]NIE J,LUO J,XIONG Z,et al.A Stackelberg Game Approach Toward Socially-Aware Incentive Mechanisms for Mobile Crowdsensing[J].IEEE Transactions on Wireless Communications,2019,18(1):724-738. [19]YANG D,XUE G,XI F,et al.Incentive Mechanisms forCrowdsensing:Crowdsourcing With Smartphones[J].IEEE/ACM Transactions on Networking,2016,24(3):1732-1744. [20]WANG B,LIU P,ZHANG C,et al.Research on Hybrid Model of Garlic Short-term Price Forecasting based on Big Data[J].Computers,Materials and Continua,2018,57(2):283-296. [21]BONDE G,KHALED R.Stock price prediction using genetic algorithms and evolution strategies[C]//International Conference on Genetic and Evolutionary Methods.2012. [22]KARGER D R,OH S,SHAH D.Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems[J].Operations Research,2014,62(1):1-24. [23]SCHUMAKER R P.Machine learning the harness track:Crowdsourcing and varying race history[J].Decision Support Systems,2013,54(3):1370-1379. [24]MONDERER D,SHAPLEY L S.Potential games[J].Gamesand economic behavior,1996,14(1):124-143. [25]NISAN N,ROUGHGARDEN T,TARDOS E,et al.Algorithmic Game Theory[J/OL].https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DE1D742A2A81DF238CF38C3F8125ED88?doi=10.1.1.720.4143&rep=rep1&type=pdf. [26]CHEN L,KYNG R,LIU Y P,et al.Maximum Flow and Minimum-Cost Flow in Almost-Linear Time[J].arXiv:2203.00671,2022. |
|