计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 184-192.doi: 10.11896/jsjkx.220900130

• 人工智能 • 上一篇    下一篇

基于纳什竞价的空间众包任务定价算法

林韦达, 董红斌, 赵炳旭   

  1. 哈尔滨工程大学计算机科学与技术学院 哈尔滨150001
  • 收稿日期:2022-09-14 修回日期:2023-02-26 出版日期:2023-10-10 发布日期:2023-10-10
  • 通讯作者: 董红斌(donghongbin@hrbeu.edu.cn)
  • 作者简介:(3103968942@qq.com)
  • 基金资助:
    国家自然科学基金(61472095);黑龙江省自然科学基金(LH2020F023)

Spatial Crowdsourcing Task Pricing Algorithm Based on Nash Bidding

LIN Weida, DONG Hongbin, ZHAO Bingxu   

  1. College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China
  • Received:2022-09-14 Revised:2023-02-26 Online:2023-10-10 Published:2023-10-10
  • About author:LIN Weida,born in 1998,postgraduate.His main research interests include spatial and crowdsourcing and intelligent computing.DONG Hongbin,born in 1963,Ph.D,professor.His main research interests include computational intelligence,machine learning and data mining.
  • Supported by:
    National Natural Science Foundation of China(61472095) and Natural Science Foundation of Heilongjiang Pro-vince,China(LH2020F023).

摘要: 任务定价是众包平台解决利润驱动的任务分配、最大化利润的重要步骤。然而关于工人期望的任务定价研究相对较少,现有大多数研究并不考虑工人与任务的动态需求。此外,出于工人隐私和传感器限制,获取完整的工人信息是困难的。为解决上述难题,提出了基于纳什竞价的空间众包任务定价算法。首先通过机器学习算法获取任务的价格范围,然后在价格区间上进行纳什竞价。为了解决动态供需造成的价格大幅波动问题,设计调整机制来稳定任务均价。最后为模拟纳什均衡点,采用了两种不同的梯度递减函数,来搜索匹配数最大的任务定价。分别在gMission数据集和合成数据集进行了实验,结果表明所提算法的匹配数量和任务均价分别是MCMF算法的60%和1.57倍,时间花费是MCMF算法的9.6%,验证了所提算法的有效性。

关键词: 纳什均衡, 任务定价, 工人期望, 动态供需, 不完整信息

Abstract: Task pricing is an important step for crowdsourcing platforms to solve profit-driven task allocation and maximize pro-fits.However,there are relatively few studies on task pricing about worker expectations,and most existing studies do not consi-der the dynamic demands of workers and tasks.Furthermore,obtaining complete worker information is difficult due to worker privacy and sensor limitations.In order to solve the above problems,a pricing algorithm for spatial crowdsourcing tasks based on nash bidding is proposed.The algorithm first obtains the price range of the task through the machine learning algorithm,and then conducts nash bidding on the price range.In order to solve the problem of large price fluctuations caused by dynamic supply and demand,an adjustment mechanism is designed to stabilize the average price of tasks.Finally,in order to simulate the Nash equilibrium point,two different gradient functions are used to search for the task price with the largest number of matches.The proposed algorithm is tested on the gMission data set and the synthetic data set respectively.The results show that the algorithm is 60% and 1.57 times of the MCMF algorithm in terms of the number of matches and the average task price,and the time cost is 9.6% of the MCMF algorithm.Experimental results show the effectiveness of the proposed algorithm.

Key words: Nash equilibrium, Task pricing, Worker expectations, Dynamic supply and demand, Incomplete information

中图分类号: 

  • TP391
[1]LI Y,XU W,YIU M L.Client-Side Service for Recommending Rewarding Routes to Mobile Crowdsourcing Workers[J].IEEE Transactions on Services Computing,2021,14(6):1995-2010.
[2]TONG Y,WANG L,ZHOU Z,et al.Flexible online task assignment in real-time spatial data[J].Proceedings of the Vldb Endowment,2017,10(11):1334-1345.
[3]ZHAO Y,ZHENG K,CUI Y,et al.Predictive Task Assignment in Spatial Crowdsourcing:A Data-driven Approach[C]//2020 IEEE 36th International Conference on Data Engineering(ICDE).IEEE,2020.
[4]ZHOU Z,CHEN R,WANG C,et al.Dynamic pricing in profit-driven task assignment:a domain-of-influence based approach[J].International Journal of Machine Learning and Cybernetics,2021,12(2021):1015-1030.
[5]GUO B,YAN L,WU W,et al.ActiveCrowd:A Framework for Optimized Multi-Task Allocation in Mobile Crowdsensing Systems[J].IEEE Transactions on Human-Machine Systems,2017,(3):392-403.
[6]FARBER H S.Why you can't find a taxi in the rain and other labor supply lessons from cab drivers[J].The Quarterly Journal of Economics,2015,130(4):1975-2026.
[7]CHEN Z,FU R,ZHAO Z,et al.gMission:A general spatialcrowdsourcing platform[J].Proceedings of the Vldb Endowment,2014,7(13):1629-1632.
[8]TONG Y X,CHEN L,SHAHABI C.Spatial crowdsourcing:challenges,techniques,and applications[C]//Proceedings of the VLDB Endowment.2017:1988-1991.
[9]TONG Y,CHEN L,SHAHABI C.Spatial crowdsourcing:challenges,techniques,and applications[C]//Very Large Data Bases.VLDB Endowment,2017.
[10]LI X H,DONG H B.Matching modeling and optimization me-thod of ride-sharing trip based on E-CARGO model [J].Computer Applications,2022,42(3):778-782.
[11]PAN Q X,YIN Z X,DONG H B,et al.Task Allocation Algorithm for Space-Time Crowdsourcing Based on Tabu Search [J].Journal of Intelligent Systems,2020,15(6):1040-1048.
[12]GUAN S.Analysis of Optimal Pricing Model of Crowdsourcing Platform Based on Cluster and Proportional Sharing[C]//2018 6th International Symposium on Computational and Business Intelligence(ISCBI).2018.
[13]WANG H,NGUYEN D N,HOANG D T,et al.Real-TimeCrowdsourcing Incentive for Radio Environment Maps:A Dynamic Pricing Approach[C]//2018 IEEE Global Communications Conference(GLOBECOM).IEEE,2019.
[14]TONG Y,WANG L,ZHOU Z,et al.Dynamic pricing in spatial crowdsourcing:A matching-based approach[C]//Proceedings ACM SIGMOD International Conference on Management of Data.2018:773-788.
[15]孙雪峰,张成堂,朱林.考虑企业社会责任的双渠道闭环供应链定价决策研究[J].重庆工商大学学报(自然科学版),2022,39(4):51-59.
[16]XIA H,ZHANG R,CHENG X,et al.Two-Stage Game Design of Payoff Decision-Making Scheme for Crowdsourcing Dilemmas[J].IEEE/ACM Transactions on Networking,2020,28(6):2741-2754.
[17]PENG J,ZHU Y,SHU W,et al.When data contributors meet multiple crowdsourcers:Bilateral competition in mobile crowdsourcing[J].Computer Networks,2016,95(11):1-14.
[18]NIE J,LUO J,XIONG Z,et al.A Stackelberg Game Approach Toward Socially-Aware Incentive Mechanisms for Mobile Crowdsensing[J].IEEE Transactions on Wireless Communications,2019,18(1):724-738.
[19]YANG D,XUE G,XI F,et al.Incentive Mechanisms forCrowdsensing:Crowdsourcing With Smartphones[J].IEEE/ACM Transactions on Networking,2016,24(3):1732-1744.
[20]WANG B,LIU P,ZHANG C,et al.Research on Hybrid Model of Garlic Short-term Price Forecasting based on Big Data[J].Computers,Materials and Continua,2018,57(2):283-296.
[21]BONDE G,KHALED R.Stock price prediction using genetic algorithms and evolution strategies[C]//International Conference on Genetic and Evolutionary Methods.2012.
[22]KARGER D R,OH S,SHAH D.Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems[J].Operations Research,2014,62(1):1-24.
[23]SCHUMAKER R P.Machine learning the harness track:Crowdsourcing and varying race history[J].Decision Support Systems,2013,54(3):1370-1379.
[24]MONDERER D,SHAPLEY L S.Potential games[J].Gamesand economic behavior,1996,14(1):124-143.
[25]NISAN N,ROUGHGARDEN T,TARDOS E,et al.Algorithmic Game Theory[J/OL].https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DE1D742A2A81DF238CF38C3F8125ED88?doi=10.1.1.720.4143&rep=rep1&type=pdf.
[26]CHEN L,KYNG R,LIU Y P,et al.Maximum Flow and Minimum-Cost Flow in Almost-Linear Time[J].arXiv:2203.00671,2022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!