计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 354-363.doi: 10.11896/jsjkx.230500214

• 计算机网络 • 上一篇    下一篇

时间敏感网络中的可变长整形队列调整算法

蔡嫦娟1, 庄雷2, 杨思锦2, 王家兴1, 阳鑫宇1   

  1. 1 郑州大学网络空间安全学院 郑州 450002
    2 郑州大学计算机与人工智能学院 郑州 450001
  • 收稿日期:2023-05-29 修回日期:2023-10-10 出版日期:2024-08-15 发布日期:2024-08-13
  • 通讯作者: 庄雷(ielzhuang@zzu.edu.cn)
  • 作者简介:(changjuancai@163.com)
  • 基金资助:
    河南省重大科技专项(221100210900-03)

Variable-length Shaping Queue Adjustment Algorithm in Time-sensitive Networks

CAI Changjuan1, ZHUANG Lei2, YANG Sijin2, WANG Jiaxing1, YANG Xinyu1   

  1. 1 School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450002,China
    2 School of Computer and Artificial Intelligence,Zhengzhou University,Zhengzhou 450001,China
  • Received:2023-05-29 Revised:2023-10-10 Online:2024-08-15 Published:2024-08-13
  • About author:CAI Changjuan,born in 1999,postgra-duate.Her main research interests include time-sensitive networks and next-generation Internet.
    ZHUANG Lei,born in 1963,Ph.Dsupervisor.Her main research interests include time sensitive networking,future network architecture,and network virtualization.
  • Supported by:
    This work has supported by the Major Science and Technology Program of Henan Province(221100210900-03).

摘要: 针对异步整形器(ATS)采用固定长度整形队列实现流量整形存在缓存资源利用率低、可调度流平均时延高等问题,提出了一种基于改进磷虾群算法与流量预测的可变长整形队列调整算法。综合考虑流的队列分配规则、有界时延需求及有限缓存资源,定义时间敏感网络中可调度流传输约束。引入混沌映射、反向学习与精英策略并设计自适应位置更新策略以提升传统磷虾群算法的求解能力,利用改进磷虾群算法寻找整形队列可调整上限。基于卷积神经网络与长短期记忆模型(CNN-LSTM)预测流量,根据预测值计算队列长度调整步幅。仿真结果表明,与采用固定长度整形队列的方法相比,所提算法能有效提高可调度流数量,降低调度流(ST)平均时延,并提升网络缓存资源利用率。

关键词: 时间敏感网络, 异步整形器, 改进磷虾群算法, 流量预测, 可变长队列

Abstract: A variable length shaping queue adjustment algorithm based on an improved krill herd algorithm and traffic prediction is proposed to address the issues of low buffer resource utilization and high average delay of schedulable streams using fixed length shaping queues for traffic shaping in asynchronous traffic shaper(ATS).Considering the queue allocation rules of flows,bounded delay requirements,and limited buffer resources,transmission constraints for schedulable flows are defined in time-sensitive networks.The improved krill herd algorithm is used to find the maximum adjustable upper limit of the shaping queue,using a combination of chaos mapping,opposition-based learning,elite policy,and adaptive location update strategy to enhance the algorithm’s solving ability.The traffic is predicted based on convolutional neural network and long short-term memory model(CNN-LSTM),and the queue length is calculated according to the predicted value to adjust the step.Simulation results show that compared with the method of using fixed-length shaping queues,the proposed algorithm can effectively increase the number of sche-dulable flows,reduce the average delay of scheduled traffic(ST),and improve the utilization rate of network buffer resources.

Key words: Time-sensitive network, Asynchronous traffic shaper, Improved krill herd algorithm, Traffic prediction, Variable length queue

中图分类号: 

  • TP393
[1]YANG S J,ZHUANG L,SONG Y,et al.Intelligent scheduling mechanism of the time-sensitive network model in polymorphic network[J].Chinese Journal of Journal on Communications,2022,41(2):85-93.
[2]MA D,FEI X,MU X W.A VNF-aware Virtualization LayerConstructing Algorithm Based on Adjustable Hop Count[J].Journal of Zhengzhou University(Engineering Science),2021,42(5):50-55.
[3]NASRALLAH A,THYAGATURU A S,ALHARBI Z,et al.Ultra-low latency(ULL) networks:the IEEE TSN and IETF DetNet standards and related 5G ULL research[J].IEEE Communications Surveys & Tutorials,2019,21(1):88-145.
[4]WANG J X,YANG S J,ZHUANG L,et al.Multi-objective Online Hybrid Traffic Scheduling Algorithm in Time-sensitive Networks[J].Computer Science,2023,50(7):286-292.
[5]NASRALLAH A,THYAGATURU A S,ALHARBI Z,et al.Performance Comparison of IEEE 802.1 TSN Time Aware Shaper(TAS) and Asynchronous Traffic Shaper(ATS) [J].IEEE Access,2019(7):44165-44181.
[6]PRADOS-GARZON J,TALEB T,BAGAA M.Optimization of Flow Allocation in Asynchronous Deterministic 5G Transport Networks by Leveraging Data Analytics [J].IEEE Transactions on Mobile Computing,2023,22(3):1672-1687.
[7]LIN Y,JIN X,ZHANG T,et al.Queue assignment for Fixed-priority real-time flows in time-sensitive networks:Hardness and Algorithm [J].Journal of Systems Architecture,2021(116):102141.
[8]SPECHT J,SAMII S.Urgency-Based Scheduler for Time-Sensitive Switched Ethernet Networks [C]//2016 28th Euromicro Conference on Real-Time Systems(ECRTS).2016:75-85.
[9]YIN S W,WANG S,HUANG T.Analysis and Optimization of Queue Based on Network Calculus in Time-Sensitive Networking[J].ZTE Technology Journal,2022,28(1):21-28.
[10]MA X,LI S,GUAN Z,et al.Time-Sensitive Networking Mechanism Aided by Multilevel Cyclic Queues in LEO Satellite Networks [J].Electronics,2023,12(6):1357-1369.
[11]YAN J,QUAN W,JIANG X,et al.Injection Time Planning:Making CQF Practical in Time-Sensitive Networking [C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications.2020:616-625.
[12]WANG X,SHANG Z,XIA C,et al.TSN Switch Queue Length Prediction Based on an Improved LSTM Network [J/OL].https://doi.org/10.1155/2021/5130888.
[13]MARINO A G,FONS F,GHARBA A,et al.Elastic Queueing Engine for Time Sensitive Networking [C]//2021 IEEE 93rd Vehicular Technology Conference(VTC2021-Spring).2021:1-7.
[14]ZHOU Z,BERGER M S,RUEPP S R,et al.Insight into the IEEE 802.1 Qcr Asynchronous Traffic Shaping in Time Sensitive Network [J].Advances in Science,Technology and Engineering Systems Journal,2019,4(1):292-301.
[15]SPECHT J,SAMII S.Synthesis of Queue and Priority Assignment for Asynchronous Traffic Shaping in Switched Ethernet [C]//2017 IEEE Real-Time Systems Symposium(RTSS).2017:178-187.
[16]PRADOS-GARZON J,TALEB T,BAGAA M.LEARNET:Reinforcement Learning Based Flow Scheduling for Asynchronous Deterministic Networks [C]//2020 IEEE International Confe-rence on Communications ICC.2020:1-6.
[17]IEEE Draft Standard for Local and metropolitan area networks-Bridges and Bridged Networks Amendment:Asynchronous Traffic Shaping[S].Institute of Electrical and Electronics Engineers(IEEE),2020.
[18]PRADOS-GARZON J,TALEB T.Asynchronous Time-Sensi-tive Networking for 5G Backhauling [J].IEEE Network,2021,35(2):144-151.
[19]MATE M,SIMON C,MALIOSZ M.Asynchronous Time-Aware Shaper for Time-Sensitive Networking[C]//2021 17th International Conference on Network and Service Management(CNSM).2021.
[20]YE J C,LEUNG K C,LOW S H.Combating Bufferbloat inMulti-Bottleneck Networks:Theory and Algorithms [J].IEEE/ACM Transactions on Networking,2021,29(4):1477-1493.
[21]HE L,HUANG S.An efficient krill herd algorithm for colorimage multilevel thresholding segmentation Problem [J].Applied Soft Computing,2020(89):106063.
[22]VARGA A,HORNIG R.An overview of the OMNeT++ si-mulation environment [C]//Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications,Networks and Systems & Workshops.2008.
[23]INET Framework[EB/OL].https://inet.omnetpp.org/.
[24]GANDOMI A H,ALAVI A H.Krill herd:A new bio-inspiredoptimization Algorithm [J].Communications in Nonlinear Science and Numerical Simulation,2012,17(12):4831-4845.
[25]WANG G,GUO L,GANDOMI A H,et al.Lévy-Flight KrillHerd Algorithm [J].Mathematical Problems in Engineering,2013(2013):1-14.
[26]GUO L,WANG G G,GANDOMI A H,et al.A new improved krill herd algorithm for global numerical Optimization [J].Neurocomputing,2014(138):392-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!