计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 354-363.doi: 10.11896/jsjkx.230500214
蔡嫦娟1, 庄雷2, 杨思锦2, 王家兴1, 阳鑫宇1
CAI Changjuan1, ZHUANG Lei2, YANG Sijin2, WANG Jiaxing1, YANG Xinyu1
摘要: 针对异步整形器(ATS)采用固定长度整形队列实现流量整形存在缓存资源利用率低、可调度流平均时延高等问题,提出了一种基于改进磷虾群算法与流量预测的可变长整形队列调整算法。综合考虑流的队列分配规则、有界时延需求及有限缓存资源,定义时间敏感网络中可调度流传输约束。引入混沌映射、反向学习与精英策略并设计自适应位置更新策略以提升传统磷虾群算法的求解能力,利用改进磷虾群算法寻找整形队列可调整上限。基于卷积神经网络与长短期记忆模型(CNN-LSTM)预测流量,根据预测值计算队列长度调整步幅。仿真结果表明,与采用固定长度整形队列的方法相比,所提算法能有效提高可调度流数量,降低调度流(ST)平均时延,并提升网络缓存资源利用率。
中图分类号:
[1]YANG S J,ZHUANG L,SONG Y,et al.Intelligent scheduling mechanism of the time-sensitive network model in polymorphic network[J].Chinese Journal of Journal on Communications,2022,41(2):85-93. [2]MA D,FEI X,MU X W.A VNF-aware Virtualization LayerConstructing Algorithm Based on Adjustable Hop Count[J].Journal of Zhengzhou University(Engineering Science),2021,42(5):50-55. [3]NASRALLAH A,THYAGATURU A S,ALHARBI Z,et al.Ultra-low latency(ULL) networks:the IEEE TSN and IETF DetNet standards and related 5G ULL research[J].IEEE Communications Surveys & Tutorials,2019,21(1):88-145. [4]WANG J X,YANG S J,ZHUANG L,et al.Multi-objective Online Hybrid Traffic Scheduling Algorithm in Time-sensitive Networks[J].Computer Science,2023,50(7):286-292. [5]NASRALLAH A,THYAGATURU A S,ALHARBI Z,et al.Performance Comparison of IEEE 802.1 TSN Time Aware Shaper(TAS) and Asynchronous Traffic Shaper(ATS) [J].IEEE Access,2019(7):44165-44181. [6]PRADOS-GARZON J,TALEB T,BAGAA M.Optimization of Flow Allocation in Asynchronous Deterministic 5G Transport Networks by Leveraging Data Analytics [J].IEEE Transactions on Mobile Computing,2023,22(3):1672-1687. [7]LIN Y,JIN X,ZHANG T,et al.Queue assignment for Fixed-priority real-time flows in time-sensitive networks:Hardness and Algorithm [J].Journal of Systems Architecture,2021(116):102141. [8]SPECHT J,SAMII S.Urgency-Based Scheduler for Time-Sensitive Switched Ethernet Networks [C]//2016 28th Euromicro Conference on Real-Time Systems(ECRTS).2016:75-85. [9]YIN S W,WANG S,HUANG T.Analysis and Optimization of Queue Based on Network Calculus in Time-Sensitive Networking[J].ZTE Technology Journal,2022,28(1):21-28. [10]MA X,LI S,GUAN Z,et al.Time-Sensitive Networking Mechanism Aided by Multilevel Cyclic Queues in LEO Satellite Networks [J].Electronics,2023,12(6):1357-1369. [11]YAN J,QUAN W,JIANG X,et al.Injection Time Planning:Making CQF Practical in Time-Sensitive Networking [C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications.2020:616-625. [12]WANG X,SHANG Z,XIA C,et al.TSN Switch Queue Length Prediction Based on an Improved LSTM Network [J/OL].https://doi.org/10.1155/2021/5130888. [13]MARINO A G,FONS F,GHARBA A,et al.Elastic Queueing Engine for Time Sensitive Networking [C]//2021 IEEE 93rd Vehicular Technology Conference(VTC2021-Spring).2021:1-7. [14]ZHOU Z,BERGER M S,RUEPP S R,et al.Insight into the IEEE 802.1 Qcr Asynchronous Traffic Shaping in Time Sensitive Network [J].Advances in Science,Technology and Engineering Systems Journal,2019,4(1):292-301. [15]SPECHT J,SAMII S.Synthesis of Queue and Priority Assignment for Asynchronous Traffic Shaping in Switched Ethernet [C]//2017 IEEE Real-Time Systems Symposium(RTSS).2017:178-187. [16]PRADOS-GARZON J,TALEB T,BAGAA M.LEARNET:Reinforcement Learning Based Flow Scheduling for Asynchronous Deterministic Networks [C]//2020 IEEE International Confe-rence on Communications ICC.2020:1-6. [17]IEEE Draft Standard for Local and metropolitan area networks-Bridges and Bridged Networks Amendment:Asynchronous Traffic Shaping[S].Institute of Electrical and Electronics Engineers(IEEE),2020. [18]PRADOS-GARZON J,TALEB T.Asynchronous Time-Sensi-tive Networking for 5G Backhauling [J].IEEE Network,2021,35(2):144-151. [19]MATE M,SIMON C,MALIOSZ M.Asynchronous Time-Aware Shaper for Time-Sensitive Networking[C]//2021 17th International Conference on Network and Service Management(CNSM).2021. [20]YE J C,LEUNG K C,LOW S H.Combating Bufferbloat inMulti-Bottleneck Networks:Theory and Algorithms [J].IEEE/ACM Transactions on Networking,2021,29(4):1477-1493. [21]HE L,HUANG S.An efficient krill herd algorithm for colorimage multilevel thresholding segmentation Problem [J].Applied Soft Computing,2020(89):106063. [22]VARGA A,HORNIG R.An overview of the OMNeT++ si-mulation environment [C]//Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications,Networks and Systems & Workshops.2008. [23]INET Framework[EB/OL].https://inet.omnetpp.org/. [24]GANDOMI A H,ALAVI A H.Krill herd:A new bio-inspiredoptimization Algorithm [J].Communications in Nonlinear Science and Numerical Simulation,2012,17(12):4831-4845. [25]WANG G,GUO L,GANDOMI A H,et al.Lévy-Flight KrillHerd Algorithm [J].Mathematical Problems in Engineering,2013(2013):1-14. [26]GUO L,WANG G G,GANDOMI A H,et al.A new improved krill herd algorithm for global numerical Optimization [J].Neurocomputing,2014(138):392-402. |
|