计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 392-397.doi: 10.11896/jsjkx.200800090

• 网络&通信 • 上一篇    下一篇

基于图卷积神经网络的SDN网络流量预测

宋元隆, 吕光宏, 王桂芝, 贾吾财   

  1. 四川大学计算机学院 成都610065
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 吕光宏(lghong@scu.edu.cn)
  • 作者简介:774799513@qq.com

SDN Traffic Prediction Based on Graph Convolutional Network

SONG Yuan-long, LYU Guang-hong, WANG Gui-zhi, JIA Wu-cai   

  1. College of Computer Science,Sichuan University,Chengdu 610065,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:SONG Yuan-long,born in 1988,master,is a student member of China Computer Federation.His main research interests include software defined network and machine learning,etc.
    LYU Guang-hong,born in 1963,Ph.D,professor.His main research interests include software defined network,cloud computing,data center network and wireless network,etc.

摘要: 精确和实时的网络流量预测在SDN网络中扮演着重要角色,同时对流量工程、网络控制起到重要作用。由于网络拓补的约束和时间的动态变化,即空间和时间特征,使得网络流量预测问题已经成为一个公认的科学问题。为了有效提取空间和时间特征,提出一种基于神经网络的预测模型,即结合了图卷积和门控循环单元的模型。图卷积网络可以有针对性地提取到复杂拓补的空间特征,同时门控循环单元能提取到流量的时间特征,两者的结合可以有效地预测软定义网络中的流量。在模型性能比较方面,将提出的GCGRU与经典方法进行了比较。评估指标包括MSE,RMSE,MAE。实验结果表明,GCGRU能够更有效地进行流量预测。

关键词: 空间依赖, 流量预测, 软定义网络, 时间依赖, 图卷积网络

Abstract: Accurate and real-time traffic forecasting plays an important role in the SDN and is of great significance for network traffic engineer,and network plan.Because of the constraints of network topological structure and the dynamic change of time,that is,spatial and time features,network traffic prediction has been considered as a scientific issue.In order to capture the spatial and temporal dependence simultaneously,the Graph Convolutional Gated Recurrent Unit Network model(GCGRU) is proposed,a neural network-based traffic forecasting method,which is in combination with the graph convolutional network (GCN) and gated recurrent unit (GRU).Specifically,GCN is used to learn complex topological structures to capture spatial dependence and Gated Recurrent Unit is used to learn dynamic changes of traffic data to capture temporal dependence.In terms of model perfor-mance comparison,GCGRU proposed in this paper is compared with classic methods.The evaluation metrics include MSE,RMSE,MAE.The experimental results show that GCGRU can perform better in traffic prediction.

Key words: Graph convolutional gated recurrent network, SDN, Spatial dependence, Temporal dependence, Traffic prediction

中图分类号: 

  • TP393.02
[1] KREUTZ D.Software-Defined Networking:A Comprehensive Survey[J].Proceedings of the IEEE,2015,103(1):14-76.
[2] CORTEZ P.Internet Traffic Forecasting using Neural Network[C]//IEEE International Joint Conference on Neural Network Proceedings.2006:2635-2642.
[3] FENG H,SHU Y.Study on network traffic prediction tech-niques[C]//International Conference on Wireless Communications,Networking and Mobile Computing.2005:1041-1044.
[4] DAI J,LI J.VBR MPEG Video Traffic Dynamic PredictionBased on the Modeling and Forecast of Time Series[C]//Fifth International Joint Conference on INC,IMS and IDC.2009:1752-1757.
[5] BARABAS M.Evaluation of network traffic predictionbased on neural networks with multi-task learning and multiresolution decomposition[C]//IEEE 7th International Conference on Intelligent Computer Communication and Processing.2011:95-102.
[6] KELLERER W,KALMBACH P,BLENK A,et al.Adaptable and Data-Driven Softwarized Networks:Review,Opportunities,and Challenges[J].Proceedings of the IEEE,2019,107(4):711-731.
[7] JIA Y,WU J,DU Y.Traffic speed prediction using deep learning method[C]//IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).2016:1217-1222.
[8] LV Y S,DUAN Y J,KANG W W,et al.Traffic flow prediction with big data:a deep learning approach[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(2):865-873.
[9] AZZOUNI A,PUJOLLE G.NeuTM:A neural network-based framework for traffic matrix prediction in SDN[C]//NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium.2018:1-5.
[10] RAMAKRISHNAN N,SONI T.Network Traffic PredictionUsing Recurrent Neural Networks[C]//International Conference on Machine Learning and Applications.2018:187-193.
[11] LIU Z.Traffic Matrix Prediction Based onDeep Learning for Dynamic Traffic Engineering[C]//IEEE Symposium on Computers and Communications (ISCC).2019:1-7.
[12] XU B B,CEN K T,HUANG J J,et al.A survey of neural network of graph convolution [J].Chinese Journal of Computers,2020,43(5):755-780.
[13] WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32:4-24.
[14] SATO R.A Survey on The Expressive Power of Graph Neural Networks[J].arXiv:2003.04078,2020.
[15] KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016.
[16] RUSEK K.RouteNet:Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN[J].IEEE Journal on Selected Areas in Communications,2020,38(10):2260-2270.
[17] CUI Z,HENRICKSON K,KE R,et al.High-Order Graph Convolutional Recurrent Neural Network:A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting[J].arXiv:1802.07007.
[18] SHUMA N,DAVID I,NARAN G,et al.The Emerging Field of Signal Processing on Graphs[J].IEEE Signal Processing Magazine,2013,30(3):83-98.
[19] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[J].arXiv:1606.09375.
[20] UHLIG S,QUOITIN B,LEPROPRE J,et al.Providing publicintradomain traffic matrices to the research community[J].Acm Sigcomm Computer Communication Review,2006,36(1):83-86.
[1] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[2] 李健智, 王红玲, 王中卿.
基于图卷积网络的专利摘要自动生成研究
Automatic Generation of Patent Summarization Based on Graph Convolution Network
计算机科学, 2022, 49(6A): 172-177. https://doi.org/10.11896/jsjkx.210400117
[3] 赵小虎, 叶圣, 李晓.
多算法融合的骨骼重建信息动作分类方法
Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction
计算机科学, 2022, 49(6): 269-275. https://doi.org/10.11896/jsjkx.210500070
[4] 高志宇, 王天荆, 汪悦, 沈航, 白光伟.
基于生成对抗网络的5G网络流量预测方法
Traffic Prediction Method for 5G Network Based on Generative Adversarial Network
计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240
[5] 周海榆, 张道强.
面向多中心数据的超图卷积神经网络及应用
Multi-site Hyper-graph Convolutional Neural Networks and Application
计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152
[6] 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松.
基于交互注意力图卷积网络的方面情感分类
Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification
计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180
[7] 解宇, 杨瑞玲, 刘公绪, 李德玉, 王文剑.
基于动态拓扑图的人体骨架动作识别算法
Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph
计算机科学, 2022, 49(2): 62-68. https://doi.org/10.11896/jsjkx.210900059
[8] 程思伟, 葛唯益, 王羽, 徐建.
BGCN:基于BERT和图卷积网络的触发词检测
BGCN:Trigger Detection Based on BERT and Graph Convolution Network
计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133
[9] 宋龙泽, 万怀宇, 郭晟楠, 林友芳.
面向出租车空载时间预测的多任务时空图卷积网络
Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction
计算机科学, 2021, 48(7): 112-117. https://doi.org/10.11896/jsjkx.201000089
[10] 吕明琪, 洪照雄, 陈铁明.
一种融合时空关联与社会事件的交通流预测方法
Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events
计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098
[11] 叶松涛, 周扬正, 范红杰, 陈正雷.
融合因果关系和时空图卷积网络的人体动作识别
Joint Learning of Causality and Spatio-Temporal Graph Convolutional Network for Skeleton- based Action Recognition
计算机科学, 2021, 48(11A): 130-135. https://doi.org/10.11896/jsjkx.201200205
[12] 李浩, 王飞, 谢思宇, 寇勇奇, 张兰, 杨兵, 康雁.
一种基于改进图波网的双重自回归分量交通预测模型
Dual Autoregressive Components Traffic Prediction Based on Improved Graph WaveNet
计算机科学, 2021, 48(11A): 159-165. https://doi.org/10.11896/jsjkx.201200051
[13] 曹素娥, 杨泽民.
基于聚类分析算法和优化支持向量机的无线网络流量预测
Prediction of Wireless Network Traffic Based on Clustering Analysis and Optimized Support Vector Machine
计算机科学, 2020, 47(8): 319-322. https://doi.org/10.11896/jsjkx.190800075
[14] 蒋宗礼, 李苗苗, 张津丽.
基于融合元路径图卷积的异质网络表示学习
Graph Convolution of Fusion Meta-path Based Heterogeneous Network Representation Learning
计算机科学, 2020, 47(7): 231-235. https://doi.org/10.11896/jsjkx.190600085
[15] 熊亭, 戚湧, 张伟斌.
基于DCGRU-RF模型的路网短时交通流预测
Short-term Traffic Flow Prediction Based on DCGRU-RF Model for Road Network
计算机科学, 2020, 47(5): 84-89. https://doi.org/10.11896/jsjkx.190100213
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!