计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 392-397.doi: 10.11896/jsjkx.200800090
宋元隆, 吕光宏, 王桂芝, 贾吾财
SONG Yuan-long, LYU Guang-hong, WANG Gui-zhi, JIA Wu-cai
摘要: 精确和实时的网络流量预测在SDN网络中扮演着重要角色,同时对流量工程、网络控制起到重要作用。由于网络拓补的约束和时间的动态变化,即空间和时间特征,使得网络流量预测问题已经成为一个公认的科学问题。为了有效提取空间和时间特征,提出一种基于神经网络的预测模型,即结合了图卷积和门控循环单元的模型。图卷积网络可以有针对性地提取到复杂拓补的空间特征,同时门控循环单元能提取到流量的时间特征,两者的结合可以有效地预测软定义网络中的流量。在模型性能比较方面,将提出的GCGRU与经典方法进行了比较。评估指标包括MSE,RMSE,MAE。实验结果表明,GCGRU能够更有效地进行流量预测。
中图分类号:
[1] KREUTZ D.Software-Defined Networking:A Comprehensive Survey[J].Proceedings of the IEEE,2015,103(1):14-76. [2] CORTEZ P.Internet Traffic Forecasting using Neural Network[C]//IEEE International Joint Conference on Neural Network Proceedings.2006:2635-2642. [3] FENG H,SHU Y.Study on network traffic prediction tech-niques[C]//International Conference on Wireless Communications,Networking and Mobile Computing.2005:1041-1044. [4] DAI J,LI J.VBR MPEG Video Traffic Dynamic PredictionBased on the Modeling and Forecast of Time Series[C]//Fifth International Joint Conference on INC,IMS and IDC.2009:1752-1757. [5] BARABAS M.Evaluation of network traffic predictionbased on neural networks with multi-task learning and multiresolution decomposition[C]//IEEE 7th International Conference on Intelligent Computer Communication and Processing.2011:95-102. [6] KELLERER W,KALMBACH P,BLENK A,et al.Adaptable and Data-Driven Softwarized Networks:Review,Opportunities,and Challenges[J].Proceedings of the IEEE,2019,107(4):711-731. [7] JIA Y,WU J,DU Y.Traffic speed prediction using deep learning method[C]//IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).2016:1217-1222. [8] LV Y S,DUAN Y J,KANG W W,et al.Traffic flow prediction with big data:a deep learning approach[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(2):865-873. [9] AZZOUNI A,PUJOLLE G.NeuTM:A neural network-based framework for traffic matrix prediction in SDN[C]//NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium.2018:1-5. [10] RAMAKRISHNAN N,SONI T.Network Traffic PredictionUsing Recurrent Neural Networks[C]//International Conference on Machine Learning and Applications.2018:187-193. [11] LIU Z.Traffic Matrix Prediction Based onDeep Learning for Dynamic Traffic Engineering[C]//IEEE Symposium on Computers and Communications (ISCC).2019:1-7. [12] XU B B,CEN K T,HUANG J J,et al.A survey of neural network of graph convolution [J].Chinese Journal of Computers,2020,43(5):755-780. [13] WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32:4-24. [14] SATO R.A Survey on The Expressive Power of Graph Neural Networks[J].arXiv:2003.04078,2020. [15] KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016. [16] RUSEK K.RouteNet:Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN[J].IEEE Journal on Selected Areas in Communications,2020,38(10):2260-2270. [17] CUI Z,HENRICKSON K,KE R,et al.High-Order Graph Convolutional Recurrent Neural Network:A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting[J].arXiv:1802.07007. [18] SHUMA N,DAVID I,NARAN G,et al.The Emerging Field of Signal Processing on Graphs[J].IEEE Signal Processing Magazine,2013,30(3):83-98. [19] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[J].arXiv:1606.09375. [20] UHLIG S,QUOITIN B,LEPROPRE J,et al.Providing publicintradomain traffic matrices to the research community[J].Acm Sigcomm Computer Communication Review,2006,36(1):83-86. |
[1] | 汪鸣, 彭舰, 黄飞虎. 基于多时间尺度时空图网络的交通流量预测模型 Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction 计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188 |
[2] | 李健智, 王红玲, 王中卿. 基于图卷积网络的专利摘要自动生成研究 Automatic Generation of Patent Summarization Based on Graph Convolution Network 计算机科学, 2022, 49(6A): 172-177. https://doi.org/10.11896/jsjkx.210400117 |
[3] | 赵小虎, 叶圣, 李晓. 多算法融合的骨骼重建信息动作分类方法 Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction 计算机科学, 2022, 49(6): 269-275. https://doi.org/10.11896/jsjkx.210500070 |
[4] | 高志宇, 王天荆, 汪悦, 沈航, 白光伟. 基于生成对抗网络的5G网络流量预测方法 Traffic Prediction Method for 5G Network Based on Generative Adversarial Network 计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240 |
[5] | 周海榆, 张道强. 面向多中心数据的超图卷积神经网络及应用 Multi-site Hyper-graph Convolutional Neural Networks and Application 计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152 |
[6] | 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松. 基于交互注意力图卷积网络的方面情感分类 Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification 计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180 |
[7] | 解宇, 杨瑞玲, 刘公绪, 李德玉, 王文剑. 基于动态拓扑图的人体骨架动作识别算法 Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph 计算机科学, 2022, 49(2): 62-68. https://doi.org/10.11896/jsjkx.210900059 |
[8] | 程思伟, 葛唯益, 王羽, 徐建. BGCN:基于BERT和图卷积网络的触发词检测 BGCN:Trigger Detection Based on BERT and Graph Convolution Network 计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133 |
[9] | 宋龙泽, 万怀宇, 郭晟楠, 林友芳. 面向出租车空载时间预测的多任务时空图卷积网络 Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction 计算机科学, 2021, 48(7): 112-117. https://doi.org/10.11896/jsjkx.201000089 |
[10] | 吕明琪, 洪照雄, 陈铁明. 一种融合时空关联与社会事件的交通流预测方法 Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events 计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098 |
[11] | 叶松涛, 周扬正, 范红杰, 陈正雷. 融合因果关系和时空图卷积网络的人体动作识别 Joint Learning of Causality and Spatio-Temporal Graph Convolutional Network for Skeleton- based Action Recognition 计算机科学, 2021, 48(11A): 130-135. https://doi.org/10.11896/jsjkx.201200205 |
[12] | 李浩, 王飞, 谢思宇, 寇勇奇, 张兰, 杨兵, 康雁. 一种基于改进图波网的双重自回归分量交通预测模型 Dual Autoregressive Components Traffic Prediction Based on Improved Graph WaveNet 计算机科学, 2021, 48(11A): 159-165. https://doi.org/10.11896/jsjkx.201200051 |
[13] | 曹素娥, 杨泽民. 基于聚类分析算法和优化支持向量机的无线网络流量预测 Prediction of Wireless Network Traffic Based on Clustering Analysis and Optimized Support Vector Machine 计算机科学, 2020, 47(8): 319-322. https://doi.org/10.11896/jsjkx.190800075 |
[14] | 蒋宗礼, 李苗苗, 张津丽. 基于融合元路径图卷积的异质网络表示学习 Graph Convolution of Fusion Meta-path Based Heterogeneous Network Representation Learning 计算机科学, 2020, 47(7): 231-235. https://doi.org/10.11896/jsjkx.190600085 |
[15] | 熊亭, 戚湧, 张伟斌. 基于DCGRU-RF模型的路网短时交通流预测 Short-term Traffic Flow Prediction Based on DCGRU-RF Model for Road Network 计算机科学, 2020, 47(5): 84-89. https://doi.org/10.11896/jsjkx.190100213 |
|