计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241000166-8.doi: 10.11896/jsjkx.241000166

• 计算机图形学&多媒体 • 上一篇    下一篇

基于改进YOLO模型的脑肿瘤病灶区域检测

荣昌达, 殷继彬   

  1. 昆明理工大学信息工程与自动化学院 昆明 650500
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 殷继彬(41868028@qq.com)
  • 作者简介:1301325900@qq.com

Detection of Brain Tumor Lesion Areas Based on Improved YOLO Model

RONG Changda, YIN Jibin   

  1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China
  • Online:2025-11-15 Published:2025-11-10

摘要: 针对传统人工检测在脑肿瘤阅片中易受主观因素影响而出现误诊或漏诊的问题,结合脑肿瘤图像的特点,提出一种改进YOLO模型以实现对脑肿瘤病灶区域的智能检测。针对脑肿瘤病灶区域形状不规则的特点,引入可变形卷积,使得网络能自适应复杂病灶形态,提升不规则病灶的特征提取能力。同时,通过嵌入结合了全局多头注意力、局部注意力和通道注意力的全局注意力机制,使网络在关注病灶区域细微特征的同时,降低图像复杂背景对病灶区域特征提取的负面影响,以获得更高的识别准确率。此外,针对脑肿瘤数据集标注中预测框不一定精准的实际情况,采用改进Wise-IoU代替原有的CIoU损失函数,以应对人工标注不精准的问题。在脑肿瘤数据集Brain Tumor Detection上的对比实验结果表明,所提出的模型相比于原始模型,精度提高了5.9%。

关键词: YOLO, 医学图像检测, 脑肿瘤, 注意力机制, 可变形卷积

Abstract: Aiming at the problem that traditional manual detection is easily affected by subjective factors leading to misdiagnosis or omission in brain tumour reading,an improved YOLO model is proposed for intelligent detection of brain tumour foci region by combining the characteristics of brain tumour images.Aiming at the irregular shape of brain tumour lesion regions,deformable convolution is introduced to make the network adaptive to complex lesion morphology and improve the feature extraction ability of irregular lesions.Meanwhile,by embedding a global attention mechanism that combines global multi-attention,local attention and channel attention,the network focuses on the subtle features of the lesion region while reducing the negative impact of the complex background of the image on the feature extraction of the lesion region in order to obtain a higher recognition accuracy.In addition,for the actual situation that the prediction frames in the brain tumour dataset annotation are not necessarily accurate,the improved Wise-IoU is used instead of the original CIoU loss function to adapt to the problem of inaccurate manual annotation.The results of comparison experiments on the brain tumour dataset Brain Tumor Detection show that the proposed model improves the accuracy by 5.9%compared to the original model.

Key words: YOLO, Medical image detection, Brain tumor, Attention mechanism, Deformable convolution

中图分类号: 

  • TP391
[1]HAN R Q,ZHOU J Y,ZHANG Z,et al.Incidence and mortality of brain tumors in China in 2015 [J].Chinese Tumor,2021,30(1):29-34.
[2]BALE T A,ROSENBLUM M K.The 2021 WHO Classification of Tumors of the Central Nervous System:An update on pediatric low-grade gliomas and glioneuronal tumors [J].Brain Pathology,2022,32(4):e13060.
[3]DEANGELIS L M.Global consequences of malignant CNStumours:a call to action [J].The Lancet Neurology,2019,18(4):324-325.
[4]LIU H,WANG G H,ZHANG Q,et al.Optimization of Dice loss function for 3D brain tumor segmentation [J].Chinese Medical Equipment,2019,34(5):20-23,31.
[5]ZHANG L.Study on key techniques of assisted diagnosis of acute stroke based on medical imaging [D].Beijing:Beijing University of Posts and Telecommunications,2022.
[6]LUAN X H.Design and implementation of MRI computer-aided diagnosis system for brain diseases [D].Shenyang:NortheasternUniversity,2009.
[7]OTTOM M A,RAHMAN H A,DINOV I D.Znet:deep learning approach for 2D MRI brain tumor segmentation [J].IEEE Journal of Translational Engineering in Health and Medicine,2022,10:1-8.
[8]ZAIDI S S A,ANSARI M S,ASLAM A,et al.A survey of mo-dern deep learning based object detection models [J].Digital Signal Processing,2022,126:103514.
[9]KANG M,TING C M,TING F F,et al.RCS-YOLO:A fast and high-accuracy object detector for brain tumor detection [C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2023.
[10]KUMAR V V,PRINCE P G K.Brain lesion detection and ana-lysis-a review[C]//Proceedings of the 2021 Fifth International Conference on I-SMAC(IoT in Social,Mobile,Analytics and Cloud)(I-SMAC).IEEE,2021.
[11]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016.
[12]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications [J].arXiv:1704.04861,2017.
[13]AMIN J,SHARIF M,HALDORAI A,et al.Brain tumor detection and classification using machine learning:a comprehensive survey [J].Complex & Intelligent Systems,2022,8(4):3161-3183.
[14]LATHER M,SINGH P.Investigating Brain Tumor Segmenta-tion and Detection Techniques [C]//Proceedings of the International Conference on Computational Intelligence and Data Scie-nce(ICCIDS).NorthCap Univ,Gurugram,INDIA,2020.
[15]SOHAN M,SAI RAM T,REDDY R,et al.A review on yolov8 and its advancements [C]//Proceedings of the International Conference on Data Intelligence and Cognitive Informatics.Springer,2024.
[16]ZHU X,HU H,LIN S,et al.Deformable convnets v2:More deformable,better results [C]//Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019.
[17]TONG Z,CHEN Y,XU Z,et al.Wise-IoU:Bounding box regression loss with dynamic focusing mechanism[J].arXiv:2301.10051,2023.
[18]REDMON J.You only look once:Unified,real-time object detec-tion[C]//Proceedings of the Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2016.
[19]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017.
[20]CHU W J.Research on key technologies of tank armored vehicle target detection based on YOLOv5 [D].Beijing:Beijing Jiaotong University,2021.
[21]MI Z,LIAN Z.Review of YOLO Methods for Universal target Detection [J].Computer Engineering and Applications,2024,60(21):38-54.
[22]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023.
[23]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017.
[24]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018.
[25]WANG T,LIU L B.Retail product detection based on Deformation Convolution and Multiple attention [J].Computer System Application,2024,33(11):101-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!