Computer Science ›› 2020, Vol. 47 ›› Issue (6A): 622-625.doi: 10.11896/JsJkx.190400079

• Interdiscipline & Application • Previous Articles     Next Articles

Accelerated Software System Based on Embedded Multicore DSP

CAI Yu-xin, TANG Zhi-wei, ZHAO Bo, YANG Ming and WU Yu-fei   

  1. The Third Research Institutute of Ministry of Public Security,Shanghai 200000,China
  • Published:2020-07-07
  • About author:CAI Yu-xin, born in 1989, master, senior engineer. Her main research interests include mobile police and image processing.
  • Supported by:
    This work was supported by the National Key R&D Program of China (2017YFC0821603).

Abstract: In recent years,with the rapid development of intelligent video surveillance,the processing video data generated by various video capture devices has become an important task in the public security industry.At present,most video data processing adopts the back-end server mode,which has a high requirement for bandwidth of video transmission and has problems such as insufficient back-end server resources.For this reason,this paper proposes to use the embedded multi-core acceleration board instead of the server to complete part of the task,and various image processing algorithms that consume server resources are stripped from the backend server,and they are put into the front-end embedded acceleration board to calculate,to a certain extent,it can save server resources and improve server efficiency.Finally,the scheme is tested in this paper.The target multi-core acceleration board is used to detect the target with a resolution of at least 2million pixels.The test result shows that the average processing power of each image is not less than 200ms,and it can process more than 1.3million pictures within 24hours.It can be seen that it is feasible to use a multi-core embedded board instead of a server to complete the image processing solution.

Key words: Acceleration board, Embedded multi-core, Image processing, Target detection, Video monitor

CLC Number: 

  • TP391
[1] 余毅.一种基于物联网的改进型智能视频监控设备的设计.物联网技术,2019(2):60-61.
[2] 崔家礼,张明丽,陈富强.基于DPM与神经网络后验的人脸关键点检测算法.北方工业大学学报,2018,30(5):31-37,51.
[3] 王春雷.基于多核DSP的专用嵌入式系统设计与实现.成都:电子科技大学,2017.
[4] 周梦.基于多核嵌入式DSP的并行编程模型研究.西安:西安电子科技大学,2014.
[5] 周黎.基于千兆网的高性能嵌入式图像处理技术研究.成都:中国科学院研究生院(光电技术研究所),2016.
[6] 姚洪猛.运动物体检测与跟踪的设计与实现.石家庄:河北科技大学,2019.
[7] 林志洁,罗壮,赵磊,等.特征金字塔多尺度全卷积目标检测算法.浙江大学学报(工学版),2019(3):1-7.
[8] 刘鹏,常振杰.基于PCIe的无线电数据传输接口实现.西安邮电大学学报,2018,23(6):68-73.
[9] 金锐.一种基于PCIe接口的高速安全芯片设计//数字中国 能源互联——2018电力行业信息化年会论文集.中国电机工程学会电力信息化专业委员会:人民邮电出版社电信科学编辑部,2018:4.
[10] 许少榕.基于DPM的图像视觉目标识别改进算法.济宁学院学报,2018,39(2):31-38.
[11] 孙营,王波涛.基于可变形部件改进模型的夜间车辆检测方法.计算机工程,2019,45(3):202-206.
[12] 杨亚涛,张松涛,李子臣,等.基于Zynq平台PCIE高速数据接口的设计与实现.电子科技大学学报,2017,46(3):522-528.
[13] 侯宁.嵌入式多核处理器设计与实现关键技术研究.合肥:合肥工业大学,2012.
[14] 杨川.MPCore多核处理器并行计算方法的研究与实现.成都:西南交通大学,2014.
[15] 政越伟.嵌入式多通道监测系统通信技术研究与实现.北京:北方工业大学,2013.
[16] 王庆.面向嵌入式多核系统的并行程序优化技术研究.哈尔滨:哈尔滨工业大学,2013.
[17] 张沁馨.基于PXIe高速接口的高速数据传输平台的设计与实现.成都:电子科技大学,2018.
[18] 黄丹萍.基于PCIe的高速数据采集模块的软件设计与实现.成都:电子科技大学,2018.
[1] LAI Teng-fei, ZHOU Hai-yang, YU Fei-hong. Real-time Extend Depth of Field Algorithm for Video Processing [J]. Computer Science, 2022, 49(6A): 314-318.
[2] ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383.
[3] LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning. Survey on Finger Vein Recognition Research [J]. Computer Science, 2022, 49(6A): 1-11.
[4] ZHANG Lyu, ZHOU Bo-wen, WU Liang-hong. SSD Network Based on Improved Convolutional Attention Module and Residual Structure [J]. Computer Science, 2022, 49(3): 211-217.
[5] HE Xiao-hui, QIU Fang-bing, CHENG Xi-jie, TIAN Zhi-hui, ZHOU Guang-sheng. High-resolution Image Building Target Detection Based on Edge Feature Fusion [J]. Computer Science, 2021, 48(9): 140-145.
[6] ZHAN Rui, LEI Yin-jie, CHEN Xun-min, YE Shu-han. Street Scene Change Detection Based on Multiple Difference Features Network [J]. Computer Science, 2021, 48(2): 142-147.
[7] ZHANG Yu-long, WANG Qiang, CHEN Ming-kang, SUN Jing-tao. Survey of Intelligent Rain Removal Algorithms for Cloud-IoT Systems [J]. Computer Science, 2021, 48(12): 231-242.
[8] YAO Nan, ZHANG Zheng. Scar Area Calculation Based on 3D Image [J]. Computer Science, 2021, 48(11A): 308-313.
[9] FENG Yi-fan, ZHAO Xue-qing, SHI Xin, YANG Kun. Light Superposition-based Color Constancy Computational Method [J]. Computer Science, 2021, 48(11A): 386-390.
[10] SONG Yi-yan, TANG Dong-lin, WU Xu-long, ZHOU Li, QIN Bei-xuan. Study on Digital Tube Image Reading Combining Improved Threading Method with HOG+SVM Method [J]. Computer Science, 2021, 48(11A): 396-399.
[11] XIE Hai-ping, LI Gao-yuan, YANG Hai-tao, ZHAO Hong-li. Classification Research of Remote Sensing Image Based on Super Resolution Reconstruction [J]. Computer Science, 2021, 48(11A): 424-428.
[12] YUAN Xiao-pei, CHEN Xiao-feng, LIAN Ming. Improved Multi-feature Fusion Algorithm for Target Detection Based on Haar-like and LBP [J]. Computer Science, 2021, 48(11): 219-225.
[13] JIN Yu-fang, WU Xiang, DONG Hui, YU Li, ZHANG Wen-an. Improved YOLO v4 Algorithm for Safety Helmet Wearing Detection [J]. Computer Science, 2021, 48(11): 268-275.
[14] YAO Lan, ZHAO Yong-heng, SHI Yu-qing, YU Ming-he. Highway Abnormal Event Detection Algorithm Based on Video Analysis [J]. Computer Science, 2020, 47(8): 208-212.
[15] SONG Ya-fei, CHEN Yu-zhang, SHEN Jun-feng and ZENG Zhang-fan. Underwater Image Reconstruction Based on Improved Residual Network [J]. Computer Science, 2020, 47(6A): 500-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!