Computer Science ›› 2022, Vol. 49 ›› Issue (6A): 1-11.doi: 10.11896/jsjkx.210400056

• Smart Healthcare • Previous Articles     Next Articles

Survey on Finger Vein Recognition Research

LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning   

  1. School of Computer Science and Engineering,Changchun University of Technology,Changchun 130102,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:LIU Wei-ye,born in 1995,postgraduate,is a member of China Computer Federation.His main research interests include image recognition and deep learning.
    LU Hui-min,born in 1972,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.Her main research interests include intelligent data processing and biometric authentication.
  • Supported by:
    Key Research and Development Program of Jilin Provincial Science and Technology Development Plan in 2020(20200401103GX).

Abstract: Finger vein recognition has become one of the most popular research hotpots in the field of biometrics because of its unique technical advantages such as living body recognition,high security and inner features.Firstly,this paper introduces the principle,merits,and current research status of finger vein recognition,then making the time as the clue,sorts out the development history of finger vein recognition technology,and discusses the classical and state-of-the-art recognition algorithms.Secondly,focusing on each process of finger vein recognition,this paper expounds on the critical techniques including image acquisition,image preprocessing,feature extraction and matching in traditional methods,and deep learning-based recognition.Besides,the commonly used public datasets and the related evaluation metrics in this field are introduced.Thirdly,this paper summarizes the existing research problems,proposes the corresponding feasible solutions,and predicts the future research direction of finger vein recognition.Some new ideas in the following studies for researchers are provided at the end.

Key words: Biometrics, Deep learning, Feature extraction, Finger vein recognition, Image processing

CLC Number: 

  • TP391
[1] MOAYER B,FU K S.A Tree System Approach for Fingerprint Pattern Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(3):376-387.
[2] TURK M,PENTLAND A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
[3] WILDES R P,ASMUTH J C,GREEN G L,et al.A System for Automated Iris Recognition[C]//Proceedings of IEEE Workshop on Applications of Computer Vision.Sarasota,FL,USA:IEEE Computer Society,1994:121-128.
[4] LEE E C,LEE H C,PARK K R.Finger Vein Recognition using Minutia-Based Alignment and Local Binary Pattern-Based Feature Extraction[J].International Journal of Imaging Systems and Technology,2009,19(3):179-186.
[5] RICE A J.A Quality Approach to Biometric Imaging[C]//Proceedings of IEE Colloquium on Image Processing for Biometric Measurement.London,UK:Institution of Engineering and Technology,1994:1-5.
[6] KONO M.A New Method for the Identification of Individuals by using of Vein Pattern Matching of a Finger[C]//Proceedings of Fifth Symposium on Pattern Measurement.Yamaguchi,Japan,2000:9-12.
[7] KONO M,UEKI H,UMEMURA S.Near-Infrared Finger Vein Patterns for Personal Identification[J].Applied Optics,2002,41(35):7429-7436.
[8] MIURA N,NAGASAKA A,MIYATAKE T.Feature Extrac-tion of Finger-Vein Patterns Based on Repeated Line Tracking and its Application to Personal Identification[J].Machine Vision and Applications,2004,15(4):194-203.
[9] MIURA N,NAGASAKA A,MIYATAKE T.Extraction of Fin-ger-Vein Patterns using Maximum Curvature Points in Image Profiles[J].IEICE Transactions on Information and Systems,2007,90(8):1185-1194.
[10] SONG W,KIM T,KIM H C,et al.A Finger-Vein Verification System using Mean Curvature[J].Pattern Recognition Letters,2011,32(11):1541-1547.
[11] ASAARI M S M,SUANDI S A,ROSDI B A.Fusion of BandLimited Phase Only Correlation and Width Centroid Contour Distance for Finger Based Biometrics[J].Expert Systems with Applications,2014,41(7):3367-3382.
[12] VLACHOS M,DERMATAS E.Finger Vein Segmentationfrom Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding[J].Computational and Mathematical Methods in Medicine,2015,2015(1):1-20.
[13] RADZI S A,HANI M K,BAKHTERI R.Finger-Vein Biometric Identification using Convolutional Neural Network[J].Turkish Journal of Electrical Engineering & Computer Sciences,2016,24(3):1863-1878.
[14] DAS R,PICIUCCO E,MAIORANA E,et al.ConvolutionalNeural Network for Finger-Vein-Based Biometric Identification[J].IEEE Transactions on Information Forensics and Security,2018,14(2):360-373.
[15] NOH K J,CHOI J,HONG J S,et al.Finger-Vein Recognition Based on Densely Connected Convolutional Network using Score-Level Fusion with Shape and Texture Images[J].IEEE Access,2020,8(1):96748-96766.
[16] LIN X R,ZHUANG B,SU X S,et al.Measurement and Matching of Human Vein Pattern Characteristics[J].Journal of Tsinghua University(Science and Technology),2003,43(2):164-167.
[17] YU C B,QIN H F.Research on Finger Vein Image Feature Extraction Algorithm[J].Computer Engineering and Application,2008,44(24):175-177.
[18] WANG K J,LIU J Y,LI X F.Finger Vein Recognition Algorithm Based on Relative Distance[J].Computer Science,2011,38(9):257-259,270.
[19] YANG L,YANG G,YIN Y,et al.Sliding Window-Based Region of Interest Extraction for Finger Vein Images[J].Sensors,2013,13(3):3799-3815.
[20] YANG G,XIAO R,YIN Y,et al.Finger Vein Recognition Based on Personalized Weight Maps[J].Sensors,2013,13(9):12093-12112.
[21] YANG J,SHI Y,JIA G.Finger-Vein Image Matching Based on Adaptive Curve Transformation[J].Pattern Recognition,2017,66(1):34-43.
[22] KANG W,LU Y,LI D,et al.From Noise to Feature:Exploiting Intensity Distribution as a Novel Soft Biometric Trait for Finger Vein Recognition[J].IEEE Transactions on Information Forensics and Security,2018,14(4):858-869.
[23] YANG S,QIN H,LIU X,et al.Finger-Vein Pattern Restoration with Generative Adversarial Network[J].IEEE Access,2020,8(1):141080-141089.
[24] MENG X,ZHENG J,XI X,et al.Finger Vein Recognition Basedon Zone-Based Minutia Matching[J].Neurocomputing,2021,423(1):110-123.
[25] HU H,KANG W,LU Y,et al.FV-Net:Learning A Finger-Vein Feature Representation Based on a CNN[C]//Proceedings of 24th IEEE International Conference on Pattern Recognition(ICPR).Los Alamitos,CA,USA:IEEE Computer Society,2018:3489-3494.
[26] LU Y,XIE S,WU S.Exploring Competitive Features using Deep Convolutional Neural Network for FingerVein Recognition[J].IEEE Access,2019,7(1):35113-35123.
[27] ZHAO D,MA H,YANG Z,et al.Finger Vein RecognitionBased on Lightweight CNN Combining Center Loss and Dyna-mic Regularization[J].Infrared Physics & Technology,2020,105(8):1-10.
[28] YANG J,SHI Y,YANG J.Personal Identification Based on Finger-Vein Features[J].Computers in Human Behavior,2011,27(5):1565-1570.
[29] LIU Z,SONG S.An Embedded Real-Time Finger-Vein Recognition System for Mobile Devices[J].IEEE Transactions on Consumer Electronics,2012,58(2):522-527.
[30] KAUBA C,PROMMEGGER B,UHL A.Combined Fully Contactless Finger and Hand Vein Capturing Device with a Corresponding Dataset[J].Sensors,2019,19(22):1-25.
[31] KANG W,LIU H,LUO W,et al.Study of a Full-View 3D Finger Vein Verification Technique[J].IEEE Transactions on Information Forensics and Security,2019,15(1):1175-1189.
[32] LIU Y Y.Research on Finger Vein Recognition System Basedon Micro Lens Array Ultrathin Device[D].Guangzhou:South China University of Technology,2017.
[33] HUANG Q,HU K,ZHOU P,et al.Design of Finger Vein Capturing Device Based on ARM and CMOS Array[C]//Procee-dings of 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).Los Alamitos,CA,USA:IEEE Computer Society,2018:193-196.
[34] WANG M W,TANG D M,YU Y C,et al.Robust Edge Detection Method for Finger Vein Images[J].Application Research of Computers,2018,35(1):296-299.
[35] YANG J,SHI Y.Finger-Vein ROI Localization and Vein Ridge Enhancement[J].Pattern Recognition Letters,2012,33(12):1569-1579.
[36] YAO Q,SONG D,XU X.Robust Finger-Vein ROI Localization Based on the 3σ Criterion Dynamic Threshold Strategy[J].Sensors,2020,20(14):1-21.
[37] YANG J,SHI Y.Towards Finger-Vein Image Restoration and Enhancement for Finger-Vein Recognition[J].Information Scien-ces,2014,268(1):33-52.
[38] XIE S J,LU Y,YOON S,et al.Intensity Variation Normalization for Finger Vein Recognition using Guided Filter Based Singe Scale Retinex[J].Sensors,2015,15(7):17089-17105.
[39] SHIN K Y,PARK Y H,NGUYEN D T,et al.Finger-Vein Image Enhancement using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering[J].Sensors,2014,14(2):3095-3129.
[40] YOU W,ZHOU W,HUANG J,et al.A Bilayer Image Restoration for Finger Vein Recognition[J].Neurocomputing,2019,348(5):54-65.
[41] WILLIAM A,ONG T S,LAU S H,et al.Finger Vein Verification using Local Histogram of Hybrid Texture Descriptors[C]//Proceedings of IEEE International Conference on Signal and Image Processing Applications(ICSIPA).Los Alamitos,CA,USA:IEEE Computer Society,2015:304-308.
[42] LEI L,XI F,CHEN S.Finger-Vein Image Enhancement Based on Pulse Coupled Neural Network[J].IEEE Access,2019,7(99):57226-57237.
[43] LIU J K,LI Y.Enhancement on the Low Contrast Finger Vein Image Under Non-Uniform Illumination[J].Microelectronics & Computer,2012,29(12):91-93,98.
[44] WU J,HE D.Finger Vein Recognition Based on Feature Point Distance[C]//Proceedings of 3rd IEEE International Conference on Image,Vision and Computing(ICIVC).Los Alamitos,CA,USA:IEEE Computer Society,2018:163-167.
[45] LIU F,YANG G,YIN Y,et al.Singular Value Decomposition Based Minutiae Matching Method for Finger Vein Recognition[J].Neurocomputing,2014,145(5):75-89.
[46] WU J D,LIU C T.Finger-Vein Pattern Identification using Principal Component Analysis and the Neural Network Technique[J].Expert Systems with Applications,2011,38(5):5423-5427.
[47] YOU L,WANG J,LI H,et al.Finger Vein Recognition Based on 2DPCA and KMMC[J].International Journal of Signal Processing,Image Processing and Pattern Recognition,2015,8(10):163-170.
[48] ZHANG L P,LI W J,NING X,et al.A Finger Vein Recognition Method Based on Histogram of Oriented Line and(2D)2FPCA[J].Journal of Computer-Aided Design & Computer Graphics,2018,30(2):254-261.
[49] HU N,MA H,ZHAN T.Finger Vein Biometric Verificationusing Block Multi-Scale Uniform Local Binary Pattern Features and Block Two-Directional Two-Dimension Principal Component Analysis[J].Optik,2020,208(1):1-16.
[50] ROSDI B A,SHING C W,SUANDI S A.Finger Vein Recognition using Local Line Binary Pattern[J].Sensors,2011,11(12):11357-11371.
[51] LU Y,YOON S,XIE S J,et al.Finger Vein Recognition using Generalized Local Line Binary Pattern[J].KSII Transactions on Internet & Information Systems,2014,8(5):1766-1784.
[52] LIU C,WANG R C,XU X W,et al.Finger Vein RecognitionAlgorithm Based on Improved LBP[J].Computer Simulation,2019,36(1):381-386.
[53] YANG G,XI X,YIN Y.FingerVein Recognition Based on a Personalized Best Bit Map[J].Sensors,2012,12(2):1738-1757.
[54] ISMAIL B,ZMIRLI M O.Enhancement of Finger Vein Patterns Extracted by Maximum Curvature Method[C]//Proceedings of IEEE International Conference on Applied Smart Systems(ICASS).Los Alamitos,CA,USA:IEEE Computer Society,2018:1-4.
[55] LI J,MA H,LV Y,et al.Finger Vein Feature Extraction Based on Improved Maximum Curvature Description[C]//Proceedings of IEEE Chinese Control Conference(CCC).Los Alamitos,CA,USA:IEEE Computer Society,2019:7566-7571.
[56] SYARIF M A,ONG T S,TEOH A B J,et al.Enhanced Maximum Curvature Descriptors for Finger Vein Verification[J].Multimedia Tools and Applications,2017,76(5):6859-6887.
[57] ZHANG J,LU Z,LI M.Active Contour-Based Methodfor Finger-Vein Image Segmentation[J].IEEE Transactions on Instrumentation and Measurement,2020,69(11):8656-8665.
[58] CHEN G,DAI Q,TANG X,et al.An Improved Least Trimmed Square Hausdorff Distance Finger Vein Recognition[C]//Proceedings of 5th IEEE International Conference on Systems and Informatics(ICSAI).Los Alamitos,CA,USA:IEEE Computer Society,2018:939-943.
[59] HONG H G,LEE M B,PARK K R.Convolutional Neural Network-Based Finger-Vein Recognition using NIR Image Sensors[J].Sensors,2017,17(6):1-21.
[60] HUANG H,LIU S,ZHENG H,et al.Deepvein:Novel FingerVein Verification Methods Basedon Deep Convolutional Neural Networks[C]//Proceedings of IEEE International Conference on Identity,Security and Behavior Analysis(ISBA).Los Alamitos,CA,USA:IEEE Computer Society,2017:1-8.
[61] ZHANG Y,LI W,ZHANG L,et al.Adaptive Gabor Convolutional Neural Networks for Finger-Vein Recognition[C]//Proceedings of IEEE International Conference on High Performance Big Data and Intelligent Systems(HPBD&IS).Los Alamitos,CA,USA:IEEE Computer Society,2019:219-222.
[62] ZHU C,YANG Y,JANG Y.Research on Denoising of FingerVein Image Based on Deep Convolutional Neural Network[C]//Proceedings of 14th International Conference on Computer Scien-ce & Education(ICCSE).Los Alamitos,CA,USA:IEEE Computer Society,2019:374-378.
[63] HOU B,YAN R.Convolutional Auto-Encoder Based Deep Feature Learning for Finger-Vein Verification[C]//Proceedings of IEEE International Symposium on Medical Measurements and Applications(MeMeA).Los Alamitos,CA,USA:IEEE Compu-ter Society,2018:1-5.
[64] TANG S,ZHOU S,KANG W,et al.Finger Vein Verificationusing a Siamese CNN[J].IET Biometrics,2019,8(5):306-315.
[65] FANG Y,WU Q,KANG W.A Novel Finger Vein Verification System Based on Two-Stream Convolutional Network Learning[J].Neurocomputing,2018,290(1):100-107.
[66] YANG H,FANG P,HAO Z.A GAN-based Method for Generating Finger VeinDataset[C]//Proceedings of 3rd International Conference on Algorithms,Computing and Artificial Intelligence(ACAI).New York,NY,USA:Association for Computing Machinery,2020:1-6.
[67] WANG G,SUN C,SOWMYA A.Learning a Compact Vein Discrimination Model with Ganerated Samples[J].IEEE Transactions on Information Forensics and Security,2019,15(1):635-650.
[68] OU W F,PO L M,ZHOU C,et al.Fusion Loss and Inter-Class Data Augmentation for Deep Finger Vein Feature Learning[J].Expert Systems with Applications,2021,171(7):1-17.
[69] YIN Y,LIU L,SUN X.SDUMLA-HMT:A Multimodal Bio-metric Database[C]//Proceedings of Chinese Conference on Biometric Recognition.Heidelberg,Berlin:Springer,2011:260-268.
[70] TOME P,VANONI M,MARCEL S.On the Vulnerability ofFinger Vein Recognition to Spoofing[C]//Proceedings of IEEE International Conference of the Biometrics Special Interest Group(BIOSIG).Los Alamitos,CA,USA:IEEE Computer Society,2014:1-10.
[71] LU Y,XIE S J,YOON S,et al.An Available Database for the Research of Finger Vein Recognition[C]//Proceedings of 6th IEEE International Congress on Image and Signal Processing(CISP).Los Alamitos,CA,USA:IEEE Computer Society,2013:410-415.
[72] TON B T,VELDHUIS R N J.A High Quality Finger Vascular Pattern Dataset Collected using a Custom Designed Capturing Device[C]//Proceedings of IEEE International Conference on Biometrics(ICB).Los Alamitos,CA,USA:IEEE Computer Society,2013:1-5.
[73] LIU T,XIE J,YAN W,et al.Finger-Vein Pattern Restoration with Direction-Variance-Boundary Constraint Search[J].Engineering Applications of Artificial Intelligence,2015,46(1):131-139.
[74] QIN H,EL-YACOUBI M A.Deep Representation-Based Fea-ture Extraction and Recovering for Finger-Vein Verification[J].IEEE Transactions on Information Forensics & Security,2017,12(8):1816-1829.
[75] GUO X,LI D,ZHANG H,et al.Image Restoration of Finger-Vein Networks Basedon Encoder-Decoder Model[J].Optoelectronics Letters,2019,15(6):463-467.
[76] QIU X,KANG W,TIAN S,et al.Finger Vein Presentation Attack Detection using Total Variation Decomposition[J].IEEE Transactions on Information Forensics and Security,2017,13(2):465-477.
[1] RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207.
[2] TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305.
[3] XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171.
[4] WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293.
[5] HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329.
[6] JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335.
[7] SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177.
[8] HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163.
[9] ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169.
[10] SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235.
[11] ZHANG Yuan, KANG Le, GONG Zhao-hui, ZHANG Zhi-hong. Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM [J]. Computer Science, 2022, 49(7): 31-39.
[12] HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78.
[13] ZENG Zhi-xian, CAO Jian-jun, WENG Nian-feng, JIANG Guo-quan, XU Bin. Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism [J]. Computer Science, 2022, 49(7): 106-112.
[14] CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126.
[15] SUN Fu-quan, CUI Zhi-qing, ZOU Peng, ZHANG Kun. Brain Tumor Segmentation Algorithm Based on Multi-scale Features [J]. Computer Science, 2022, 49(6A): 12-16.
Full text



No Suggested Reading articles found!