Computer Science ›› 2017, Vol. 44 ›› Issue (7): 180-184.doi: 10.11896/j.issn.1002-137X.2017.07.032

Previous Articles     Next Articles

Research on Recommendation Method of Restaurant Based on LDA Model

ZHANG Xiao-yang, QIN Gui-he, ZOU Mi, SUN Ming-hui and GAO Qing-yang   

  • Online:2018-11-13 Published:2018-11-13

Abstract: With the rapid development of the network,the amount of the evaluation information of the food and bevera-ge has increased dramatically.The effective analysis of the evaluation information can not only help the consumers choose the suitable restaurant,but also help the businesses improve service.For this purpose,a restaurant recommendation method based on LDA(Dirichlet Allocation Latent) model was proposed.First of all,it classifies the evaluation information according to the emotional tendencies,and then gets the positive evaluation and praise rate.Secondly,it manipulates the LDA model for text clustering to generate restaurant tags.Finally,it calculates the similarity between the user’s needs and the restaurant tags,and according to the similarity and the rate of praise,recommends the suitable restaurants to customers.We got the real food and beverage comments from the Internet,and carried out the experiment.As a result,the effect of the restaurant tags produced from this method is good,which could accurately recommend the restaurants to users.

Key words: Evaluation information,LDA,Emotion analysis,Text clustering,Restaurant tags,Restaurant recommendation

[1] ZHOU X G,GAO F,SUN Y.Sub-topic detection and tracking based on dependency connection weights for vector space model[J].Journal on Communications,2013,4(8):1-9.(in Chinese) 周学广,高飞,孙艳.基于依存连接权VSM的子话题检测与跟踪方法[J].通信学报,2013,4(8):1-9.
[2] TURNEY P D,PANTEL P.From frequency to meaning:vector space models of semantics[J].Journal of Artificial Intelligence Research,2015,37(4):141-188.
[3] LIN Y S,LIANG L,CUI Y,et al.Intelligent medical guide system based on vsm weight imporvement algorithm[J].Computer Applications and Software,2015,2(9):81-83,111.(in Chinese) 林予松,梁璐,崔勇,等.基于VSM权重改进算法的智能导医系统[J].计算机应用与软件,2015,2(9):81-83,111.
[4] HUANG C H,YIN J,HOU F.A Text Similarity Measurement Combining Word Semantic Information with TF-IDF Method[J].Chinese Journal of Computers,2011,4(5):856-864.(in Chinese) 黄承慧,印鉴,侯昉.一种结合词项语义信息和TF-IDF方法的文本相似度量方法[J].计算机学报,2011,4(5):856-864.
[5] HOGENBOOM A,BAL D,FRASINCAR F,et al.Exploiting emo-ticons in polarity classification of text[J].Journal of Web Engineering,2015,14(1):22-40.
[6] ZHOU Y,DAI M H.News Recommendation Technology Combining Semantic Analysis with TF-IDF Method[J].Computers Science,2013,0(S2):267-269,300.(in Chinese) 周由,戴牡红.语义分析与TF-IDF方法相结合的新闻推荐技术[J].计算机科学,2013,0(S2):267-269,300.
[7] RAMAGE D,HEYMANN P,MANNING C D,et al.Clustering the tagged web[C]∥International Conference on Web Search & Web Data Mining.2009:54-63.
[8] PEI Y B,LIU X X.Study on improved CHI for feature selection in Chinese text categorization.Computer Engineering and Applications[J].Computer Engineering and Applications,2011,7(4):128-130,194.(in Chinese) 裴英博,刘晓霞.文本分类中改进型CHI特征选择方法的研究[J].计算机工程与应用,2011,7(4):128-130,194.
[9] QIU Y F,WANG W,LIU D Y,et al.CHI feature selectionmethod based on variance[J].Application Research of Compu-ters,2012,9(4):1304-1306.(in Chinese) 邱云飞,王威,刘大有,等.基于方差的CHI特征选择方法[J].计算机应用研究,2012,9(4):1304-1306.
[10] REN Y G,YANG R J,YIN M F,et al.Information-gain-based Text Feature Selection Method[J].Computer Science,2012,9(11):127-130.(in Chinese) 任永功,杨荣杰,尹明飞,等.基于信息增益的文本特征选择方法[J].计算机科学,2012,9(11):127-130.
[11] ZHAO F,ZHU Y,JIN H,et al.A personalized hashtag recommendation approach using LDA-based topic model in microblog environment[J].Future Generation Computer Systems,2016,65:196-206.
[12] WANG L R,YU Z T,WANG Y B,et al.Micro-blogging topic mining based on supervised LDA user interest model[J].Journal of Shandong University(Natural Science),2015,0(9):36-41.(in Chinese) 王立人,余正涛,王炎冰,等.基于有指导LDA用户兴趣模型的微博主题挖掘[J].山东大学学报(理学版),2015,0(9):36-41.
[13] CHEN W T,ZHANG X M,LI Z J.Analysis of Topic Models on Modeling MicroBlog User Interestingness[J].Computer Science,2013,40(4):127-130,135.(in Chinese) 陈文涛,张小明,李舟军.构建微博用户兴趣模型的主题模型的分析[J].计算机科学,2013,0(4):127-130,135.
[14] DI L,DU Y P.Application of LDA Model in Microblog UserRecommendation[J].Computer Engineering,2014,0(5):1-6,11.(in Chinese) 邸亮,杜永萍.LDA模型在微博用户推荐中的应用[J].计算机工程,2014,0(5):1-6,11.
[15] BLEI D M,NG A Y,JORDAN M I.Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003,3:993-1022.
[16] FOX C,PARKER A.Convergence in variance of Chebyshev accelerated Gibbs samplers[J].Siam Journal on Scientific Computing,2014,36(1):A124-A147.
[17] ROBERTSON S E,WALKER S,JONES S,et al.Okapi atTREC-3[C]∥Proceedings of the Third Text Retrieval Conference(TRCE 1994).Gaithersburg,USA,1994.
[18] SHAO K,ZHANG J W.Research on personalized recommendation of Web text mining based on BM25F model[J].Information Studies:Theory & Application,2013,6(11):118-122.(in Chinese) 邵康,张建伟.基于BM25F模型的Web文本挖掘个性化推荐研究[J].情报理论与实践,2013,6(11):118-122.

No related articles found!
Full text



No Suggested Reading articles found!