Computer Science ›› 2020, Vol. 47 ›› Issue (1): 66-71.doi: 10.11896/jsjkx.181102110

• Computer Science Theory • Previous Articles     Next Articles

Chaotic Activity Filter Method for Business Process Based on Log Automaton

LI Juan,FANG Xian-wen,WANG Li-li,LIU Xiang-wei   

  1. (College of Mathematics and Big Data,Anhui University of Science and Technology,Huainan,Anhui 232001,China)
  • Received:2018-11-16 Published:2020-01-19
  • About author:LI Juan,born in 1992,postgraduate.Her main research interests include Pet net and Business process management;FANG Xian-wen,born in 1975,Ph.D,professor,Ph.D supervisor,is member of China Computer Federation (CCF).His main research interests include Petri net and trusted software.
  • Supported by:
    This work supported by the National Natural Science Foundation of China (61572035,61272153,61402011) and Natural Science Foundation of Anhui Province,China (1508085MF111).

Abstract: Business process event logs sometimes contain chaotic activities,which are a kind of activity independent of process state and free from process constraints,and may happen anytime and anywhere.The existence of chaotic activities can seriously affect the quality of business process mining,so filtering chaotic activities becomes one of the key contents of business process management.At present,the filtering method of chaotic activity mainly filters infrequent behavior from the event the log,and the filtering method based on high frequency priority is not effective in filtering chaotic activities in the log.In order to solve the above problems,a method based on log automata and entropy is proposed to filter chaotic activities in logs.Firstly,a suspicious chaotic activity set with high entropy is obtained by calculating the direct preset rate and direct posterior set rate of activity.Then,the log automata is constructed from the event log.From the log automata model,the intersection of the activity set of infrequent arc and the activity set of high entropy in the log is calculated to obtain the chaotic activity set.Finally,the conditional occurrence probability and behavior profile are used to determine the dependence between the chaotic activity and other activities,so as to decide whether to delete the chaotic activity completely in the log or to keep the chaotic activity in the correct position in the log to delete other activities.The effectiveness of the method is verified by case analysis.

Key words: Behavioral profile, Chaotic activity, Conditional occurrence probability, Entropy, Log automaton, Petir net

CLC Number: 

  • TP391
[1]WIL V D A.Process Mining:Data Science in Action[M]. Springer Publishing Company,Incorporated,2016.
[2]LEEMANS S J J,FAHLAND D,AALST W M P V D.Scalable process discovery and conformance checking[J].Software & Systems Modeling,2018,17(2):599-631.
[3]CHABROL M,DALMAS B,NORRE S,et al.A process tree- based algorithm for the detection of implicit dependencies[C]∥IEEE Tenth International Conference on Research Challenges in Information Science.IEEE,2016:1-11.
[4]SANI M F,ZELST S J V,AALST W M P V D.Repairing Outlier Behaviour in Event Logs [C]∥International Conference on Business Information Systems.Cham:Springer,2018.
[5]HUANG Y,WANG Y,HUANG Y.Filtering Out Infrequent Events by Expectation from Business Process Event Logs[C]∥2018 14th International Conference on Computational Intelligence and Security (CIS).IEEE Computer Society,2018.
[6]LIESAPUTRA V,YONGCHAREON S,CHAISIRI S.Efficient Process Model Discovery Using Maximal Pattern Mining[C]∥International Conference on Business Process Management.Cham,2015:441-456.
[7]LU X,FAHLAND D,BIGGELAAR,et al.Detecting Deviating Behaviors Without Models[C]∥International Conference on Business Process Management.Cham:2015:126-139.
[8]ROJAS E,MUNOZ-GAMA J,SEPU'LVEDA M,et al.Process mining in healthcare:A literature review[J].Journal of Biomedical Informatics,2016,61:224-236.
[9]PULSANONG W,POROUHAN P,TUMSWADI S,et al.Using inductive miner to find the most optimized path of workflow process[C]∥International Conference on ICT and Knowledge Engineering.IEEE,2017:1-5.
[10]BURATTIN A.Heuristics Miner for Time Interval[C]∥Esann 2010,European Symposium on Artificial Neural Networks.Bruges,Belgium:DBLP,2015:85-95.
[11]LINGALA N,SRI NAMACHCHIVAYA N,PERKOWSKI N,et al.Particle filtering in high-dimensional chaotic systems[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2012,22(4):047509.
[12]CONFORTI R,ROSA M L,HOFSTEDE A H M T.Filtering Out Infrequent Behavior from Business Process Event Logs[J].IEEE Transactions on Knowledge & Data Engineering,2017,29(2):300-314.
[13]MANNHARDT F,DE LEONI M,REIJERS H A,et al.Data-Driven Process Discovery-Revealing Conditional Infrequent Behavior from Event Logs[C]∥International Conference on Advanced Information Systems Engineering.Cham:Springer,2017:545-560.
[14]SANI M F,ZELST S J V,AALST W M P V D.Improving Process Discovery Results by Filtering Outliers Using Conditional Behavioural Probabilities [C]∥International Conference on Business Process Management.Cham:Springer,2017:216-229.
[15]TAX N,SIDOROVA N,AALST W M P V D.Discovering more precise process models from event logs by filtering out chaotic activities[J].Journal of Intelligent Information Systems,2019,52(1):107-139.
[1] ZHENG Wen-ping, LIU Mei-lin, YANG Gui. Community Detection Algorithm Based on Node Stability and Neighbor Similarity [J]. Computer Science, 2022, 49(9): 83-91.
[2] LI Qi-ye, XING Hong-jie. KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion [J]. Computer Science, 2022, 49(8): 267-272.
[3] QUE Hua-kun, FENG Xiao-feng, LIU Pan-long, GUO Wen-chong, LI Jian, ZENG Wei-liang, FAN Jing-min. Application of Grassberger Entropy Random Forest to Power-stealing Behavior Detection [J]. Computer Science, 2022, 49(6A): 790-794.
[4] MAO Sen-lin, XIA Zhen, GENG Xin-yu, CHEN Jian-hui, JIANG Hong-xia. FCM Algorithm Based on Density Sensitive Distance and Fuzzy Partition [J]. Computer Science, 2022, 49(6A): 285-290.
[5] YU Ben-gong, ZHANG Zi-wei, WANG Hui-ling. TS-AC-EWM Online Product Ranking Method Based on Multi-level Emotion and Topic Information [J]. Computer Science, 2022, 49(6A): 165-171.
[6] FAN Jing-yu, LIU Quan. Off-policy Maximum Entropy Deep Reinforcement Learning Algorithm Based on RandomlyWeighted Triple Q -Learning [J]. Computer Science, 2022, 49(6): 335-341.
[7] XIA Yuan, ZHAO Yun-long, FAN Qi-lin. Data Stream Ensemble Classification Algorithm Based on Information Entropy Updating Weight [J]. Computer Science, 2022, 49(3): 92-98.
[8] WU Shao-bo, FU Qi-ming, CHEN Jian-ping, WU Hong-jie, LU You. Meta-inverse Reinforcement Learning Method Based on Relative Entropy [J]. Computer Science, 2021, 48(9): 257-263.
[9] LUO Yue-tong, WANG Tao, YANG Meng-nan, ZHANG Yan-kong. Historical Driving Track Set Based Visual Vehicle Behavior Analytic Method [J]. Computer Science, 2021, 48(9): 86-94.
[10] LUO Chang-yin, CHEN Xue-bin, MA Chun-di, ZHANG Shu-fen. Improved Federated Average Algorithm Based on Tomographic Analysis [J]. Computer Science, 2021, 48(8): 32-40.
[11] SHI Ke-xiang, BAO Li-yong, DING Hong-wei, GUAN Zheng, ZHAO Lei. Chaos Artificial Bee Colony Algorithm Based on Homogenizing Optimization of Generated Time Series [J]. Computer Science, 2021, 48(7): 270-280.
[12] MU Jun-fang, ZHENG Wen-ping, WANG Jie, LIANG Ji-ye. Robustness Analysis of Complex Network Based on Rewiring Mechanism [J]. Computer Science, 2021, 48(7): 130-136.
[13] ZHOU Gang, GUO Fu-liang. Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data [J]. Computer Science, 2021, 48(6A): 250-254.
[14] ZHONG Yue, FANG Hu-sheng, ZHANG Guo-yu, WANG Zhao, ZHU Jing-wei. Method of CNN Flag Movement Recognition Based on 9-axis Attitude Sensor [J]. Computer Science, 2021, 48(6): 153-158.
[15] LU Jia-you, LING Xing-hong, LIU Quan, ZHU Fei. Meta-reinforcement Learning Algorithm Based on Automating Policy Entropy [J]. Computer Science, 2021, 48(6): 168-174.
Full text



No Suggested Reading articles found!