Computer Science ›› 2020, Vol. 47 ›› Issue (2): 143-149.doi: 10.11896/jsjkx.190400121
• Computer Graphics & Multimedia • Previous Articles Next Articles
LEI Tao1,LIAN Qian2,JIA Xiao-hong2,LIU Peng2
CLC Number:
[1]LI P,YANG Y,FANG T.A fast superpixel algorithm with bia-sed-clustering using visual saliency[J].Journal of Xian Jiaotong University,2015,49(1):112-117. [2]REN X,MALIK J.Learning a classification model for segmentation[C]∥Proceedings of International Conference on Computer Vision.2003:10-17. [3]WANG S,LU H,YANG F,et al.Superpixel tracking[C]∥Proceedings of International Conference on Computer Vision.2011:1323-1330. [4]HOIEM D,EFROS A,HEBERT M.Automatic photo pop-up.[J].ACM Transactions on Graphics,2015,24(3):577-584. [5]SHI J,MALIK J.Normalized Cuts and Image Segmentation.[C]∥Conference on Computer Vision & Pattern Recognition.2000:888-905. [6]MOORE A,PRINCE S,WARRELL J,et al.Superpixel lattices[C]∥Conference on Computer Vision & Pattern Recognition.2008:1-8. [7]LIU M,TUZEL O,RAMALINGAM S,et al.Entropy rate superpixel segmentation[C]∥Conference on Computer Vision & Pattern Recognition.2011:2097-2104. [8]VAN DEN BERGH M,BOIX X,ROIG G,et al.Seeds:Superpixels extracted via energy-driven sampling[C]∥Proceedings of the European Conference on Computer Vision.2012:13-26. [9]VINCENT L,SOILLE P.Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598. [10]LEI T,ZHANG Y,WANG Y,et al.A conditionally invariant mathematical morphological framework for color images[J].Information Sciences,2017,387:34-52. [11]LEI T,JIA X,LIU T,et al.Adaptive morphological reconstruction for seeded image segmentation[J].IEEE Transactions on Image Processing,2019,28(11):5510-5523. [12]LEVINSHTEIN A,STERE A,KUTULAKOS K,et al.Tur-bopixels:Fast superpixels using geometric flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2290-2297. [13]GONG Y,ZHOU Y.Differential evolutionary superpixel seg-mentation[J].IEEE Transactions on Image Processing,2018,27(3):1390-1404. [14]WANG H.Superpixel segmentation with adaptive nonlocal random walk[J].IOP Conference Series Materials Science and Engineering,2018,435(1):012001. [15]COMANICIU D,MEER P.Mean shift:A robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619. [16]SHEN J,HAO X,LIANG Z,et al.Real-time superpixel segmentation by DBSCAN clustering algorithm[J].IEEE Transactions on Image Processing,2016,25(12):5933-5942. [17]ACHANTA R,SHAJI A,SMITH K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. [18]KANUNGO T,MOUNT D,NETANYAHU N,et al.An efficient k-means clustering algorithm:analysis and implementation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,24(7):881-892. [19]BAN Z,LIU J,CAO L.Superpixel segmentation using gaussian mixture model[J].IEEE Transactions on Image Processing,2018,27(8):4105-4117. [20]WU C,ZHANG L,ZHANG H,et al.Fuzzy SLIC:Fuzzy simple linear iterative clustering[J].arXiv:1812.10932. [21]LI Z,CHEN J.Superpixel segmentation using linear spectral clustering[C]∥Conference on Computer Vision & Pattern Reco-gnition.2015:1356-1363. [22]WEI X,YANG Q,GONG Y,et al.Superpixel hierarchy[J]. IEEE Transactions on Image Processing,2018,27(10):4838-4849. [23]LIU Y,YU M,LI B,et al.Intrinsic manifold SLIC:a simple and efficient method for computing content-sensitive superpixels[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(3):653-666. [24]JAMPANI V,SUN D,LIU M,et al.Superpixel sampling networks[C]∥Proceedings of the European Conference on Computer Vision.2018:352-368. [25]LEI T,JIA X,ZHANG Y,et al.Superpixel-based fast fuzzy c-means clustering for color image segmentation[J].IEEE Tran-sactions on Fuzzy Systems,2019,27(9):1753-1766. [26]ZHAO J,BO R,HOU Q,et al.FLIC:Fast linear iterative clustering with active search[J].Computational Visual Media,2018,4(4):333-348. [27]LEE J.Digital image smoothing and the sigma filter[J].Computer Vision,Graphics,and Image Processing,1983,24:255-269. [28]WANG J,WANG X.VCells:Simple and efficient superpixels using edge-weighted centroidal voronoi tessellations[J] IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(6):1241-1247. [29]ACHANTA R,SUSSTRUNK S.Superpixels and polygons using simple non-iterative clustering[C]∥Conference on Computer Vision & Pattern Recognition.2017:4651-4660. [30]MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥Proceedings of International Conference on Computer Vision.2001:416-423. [31]LIN T,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]∥Proceedings of the European Conference on Computer Vision.2014:740-755. |
[1] | CHAI Hui-min, ZHANG Yong, FANG Min. Aerial Target Grouping Method Based on Feature Similarity Clustering [J]. Computer Science, 2022, 49(9): 70-75. |
[2] | LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao. Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients [J]. Computer Science, 2022, 49(9): 183-193. |
[3] | YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng. SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion [J]. Computer Science, 2022, 49(6A): 256-260. |
[4] | MAO Sen-lin, XIA Zhen, GENG Xin-yu, CHEN Jian-hui, JIANG Hong-xia. FCM Algorithm Based on Density Sensitive Distance and Fuzzy Partition [J]. Computer Science, 2022, 49(6A): 285-290. |
[5] | CHEN Jing-nian. Acceleration of SVM for Multi-class Classification [J]. Computer Science, 2022, 49(6A): 297-300. |
[6] | CHEN Jia-zhou, ZHAO Yi-bo, XU Yang-hui, MA Ji, JIN Ling-feng, QIN Xu-jia. Small Object Detection in 3D Urban Scenes [J]. Computer Science, 2022, 49(6): 238-244. |
[7] | Ran WANG, Jiang-tian NIE, Yang ZHANG, Kun ZHU. Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids [J]. Computer Science, 2022, 49(6): 44-54. |
[8] | XING Yun-bing, LONG Guang-yu, HU Chun-yu, HU Li-sha. Human Activity Recognition Method Based on Class Increment SVM [J]. Computer Science, 2022, 49(5): 78-83. |
[9] | ZHU Zhe-qing, GENG Hai-jun, QIAN Yu-hua. Line-Segment Clustering Algorithm for Chemical Structure [J]. Computer Science, 2022, 49(5): 113-119. |
[10] | ZHANG Yu-jiao, HUANG Rui, ZHANG Fu-quan, SUI Dong, ZHANG Hu. Study on Affinity Propagation Clustering Algorithm Based on Bacterial Flora Optimization [J]. Computer Science, 2022, 49(5): 165-169. |
[11] | ZUO Yuan-lin, GONG Yue-jiao, CHEN Wei-neng. Budget-aware Influence Maximization in Social Networks [J]. Computer Science, 2022, 49(4): 100-109. |
[12] | YANG Xu-hua, WANG Lei, YE Lei, ZHANG Duan, ZHOU Yan-bo, LONG Hai-xia. Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding [J]. Computer Science, 2022, 49(3): 121-128. |
[13] | HAN Jie, CHEN Jun-fen, LI Yan, ZHAN Ze-cong. Self-supervised Deep Clustering Algorithm Based on Self-attention [J]. Computer Science, 2022, 49(3): 134-143. |
[14] | PU Shi, ZHAO Wei-dong. Community Detection Algorithm for Dynamic Academic Network [J]. Computer Science, 2022, 49(1): 89-94. |
[15] | ZHANG Ya-di, SUN Yue, LIU Feng, ZHU Er-zhou. Study on Density Parameter and Center-Replacement Combined K-means and New Clustering Validity Index [J]. Computer Science, 2022, 49(1): 121-132. |
|