Computer Science ›› 2022, Vol. 49 ›› Issue (9): 183-193.doi: 10.11896/jsjkx.220500263
• Artificial Intelligence • Previous Articles Next Articles
LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao
CLC Number:
[1]LI T,SAHU A K,TALWALKAR A,et al.Federated Learning:Challenges,Methods,and Future Directions[J].IEEE Signal Processing Magazine,2020,37(3):50-60. [2]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tionefficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [3]MCMAHAN H B,RAMAGE D,TALWAR K,et al.Learning Differentially Private Recurrent Language Models [J].arXiv:1710.06963,2017. [4]YANG Q,LIU Y,CHEN T,et al.Federated Machine Learning:Concept and Applications[J].ACM Transactions on Intelligent Systems and Technology,2019,10(2):1-19. [5]HSIEH K,PHANISHAYEE A,MUTLU O,et al.The Non-IID Data Quagmire of Decentralized Machine Learning [J].arXiv:1910.00189,2020. [6]LI T,SAHU A K,ZAHEER M,et al.Federated Optimization in Heterogeneous Networks[J].arXiv.1812.06127,2018. [7]HARD A,RAO K,MATHEWS R,et al.Federated Learning for Mobile Keyboard Prediction [J].arXiv.1811.03604,2018. [8]YANG T,ANDREW G,EICHNER H,et al.Applied Federated Learning:Improving Google Keyboard Query Suggestions [J].arXiv.1812.02903,2018. [9]BOYD S,PARIKH N,CHU E,et al.Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J].Foundations & Trends in Machine Learning,2010,3(1):1-122. [10]DEKEL O,GILAD-BACHRACH R,SHAMIR O,et al.Optimal Distributed Online Prediction Using Mini-Batches [J].Journal of Machine Learning Research,2012,13(1):165-202. [11]RICHTÁRIK P,TAKÁČ M.Distributed Coordinate DescentMethod for Learning with Big Data [J].Journal of Machine Learning Research,2016,17(75):1-25. [12]ZHANG S,CHOROMANSKA A,LECUN Y.Deep learningwith Elastic Averaging SGD [J].arXiv.1412.6651,2014. [13]BONAWITZ K,IVANOV V,KREUTER B,et al.Practical Secure Aggregation for Privacy-Preserving Machine Learning[C]//The 2017 ACM SIGSAC Conference.ACM,2017:1175-1191. [14]BONAWITZ K,EICHNER H,GRIESKAMP W,et al.Towards Federated Learning at Scale:System Design [J].arXiv.1902.01046,2019. [15]MOHRI M,SIVEK G,SURESH A T.Agnostic FederatedLearning [C]//International Conference on Machine Learning.PMLR,2019. [16]HU H,WANG D,WU C.Distributed Machine Learning th-rough Heterogeneous Edge Systems[C]//AAAI Conference on Artificial Intelligence.2020:7179-7186. [17]PETER K,BRENDAN H,MCMAHAN H B,et al.Advancesand Open Problems in Federated Learning [J].arXiv.1912.04977,2019. [18]ZHAO Y,LI M,LAI L,et al.Federated Learning with Non-IID Data [J].arXiv.1806.00582,2018. [19]GHOSH A,CHUNG J,DONG Y,et al.An Efficient Framework for Clustered Federated Learning [J].arXiv:2006.04088,2020. [20]SATTLER F,KR MÜLLER,SAMEK W.Clustered Federated Learning:Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints [J].IEEE Trans Neural Netw Learn Syst,2021,32(8):3710-3722. [21]YAN Y,NIU C,DING Y,et al.Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability [J].arXiv.2002.07399,2020. [22]ANKERST M,BREUNIG M M,KRIEGEL H P,et al.OP-TICS:ordering points to identify the clustering structure [J].SIGMOD Record:Special Interest Group on Management Data,1999,28(2):49-60. [23]LI X,HUANG K,YANG W,et al.On the Convergence of FedAvg on Non-IID Data [J].arXiv:1907.02189,2020. [24]LECUN Y,BOTTOU L.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. |
[1] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[2] | CHAI Hui-min, ZHANG Yong, FANG Min. Aerial Target Grouping Method Based on Feature Similarity Clustering [J]. Computer Science, 2022, 49(9): 70-75. |
[3] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[4] | LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao. Clustered Federated Learning Methods Based on DBSCAN Clustering [J]. Computer Science, 2022, 49(6A): 232-237. |
[5] | YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng. SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion [J]. Computer Science, 2022, 49(6A): 256-260. |
[6] | MAO Sen-lin, XIA Zhen, GENG Xin-yu, CHEN Jian-hui, JIANG Hong-xia. FCM Algorithm Based on Density Sensitive Distance and Fuzzy Partition [J]. Computer Science, 2022, 49(6A): 285-290. |
[7] | CHEN Jing-nian. Acceleration of SVM for Multi-class Classification [J]. Computer Science, 2022, 49(6A): 297-300. |
[8] | YAN Meng, LIN Ying, NIE Zhi-shen, CAO Yi-fan, PI Huan, ZHANG Lan. Training Method to Improve Robustness of Federated Learning [J]. Computer Science, 2022, 49(6A): 496-501. |
[9] | Ran WANG, Jiang-tian NIE, Yang ZHANG, Kun ZHU. Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids [J]. Computer Science, 2022, 49(6): 44-54. |
[10] | CHEN Jia-zhou, ZHAO Yi-bo, XU Yang-hui, MA Ji, JIN Ling-feng, QIN Xu-jia. Small Object Detection in 3D Urban Scenes [J]. Computer Science, 2022, 49(6): 238-244. |
[11] | XING Yun-bing, LONG Guang-yu, HU Chun-yu, HU Li-sha. Human Activity Recognition Method Based on Class Increment SVM [J]. Computer Science, 2022, 49(5): 78-83. |
[12] | ZHU Zhe-qing, GENG Hai-jun, QIAN Yu-hua. Line-Segment Clustering Algorithm for Chemical Structure [J]. Computer Science, 2022, 49(5): 113-119. |
[13] | ZHANG Yu-jiao, HUANG Rui, ZHANG Fu-quan, SUI Dong, ZHANG Hu. Study on Affinity Propagation Clustering Algorithm Based on Bacterial Flora Optimization [J]. Computer Science, 2022, 49(5): 165-169. |
[14] | WANG Mei-shan, YAO Lan, GAO Fu-xiang, XU Jun-can. Study on Differential Privacy Protection for Medical Set-Valued Data [J]. Computer Science, 2022, 49(4): 362-368. |
[15] | ZUO Yuan-lin, GONG Yue-jiao, CHEN Wei-neng. Budget-aware Influence Maximization in Social Networks [J]. Computer Science, 2022, 49(4): 100-109. |
|