Computer Science ›› 2021, Vol. 48 ›› Issue (2): 100-104.doi: 10.11896/jsjkx.191200033
• Database & Big Data & Data Science • Previous Articles Next Articles
LI Xin-chao, LI Pei-feng, ZHU Qiao-ming
CLC Number:
[1] CAI H Y,ZHENG V W,CHANG K.A Comprehensive Survey of Graph Embedding:Problems,Techniques and Applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,30(9):1616-1637. [2] LIBEN-NOWELL D,KLEINBERG J.The link-prediction pro-blem for social networks[J].Journal of the American Society for Information Science and Technology,2007,58(7):1019-1031. [3] CHANDOLA V,BANERJEE A,KUMAR V.Anomaly Detection:A Survey[J].ACM Computing Surveys,2009,41(3):1-72. [4] WANG X,CUI P,WANG J,et al.Community preserving network embedding[C]//The 31st AAAI Conference on Artificial Intelligence.2017. [5] WEI X K,XU L CH,CAO B K,et al.Cross view link prediction by learning noise-resilient representation consensus[C]//The 26th International Conference on World Wide Web.Internatio-nal World Wide Web Conferences Steering Committee.2017:1611-1619. [6] TOMAS M,LLYA S,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//NIPS 2013.Cambridge,MA:MIT Press,2013:3111-3119. [7] TANG L,LIU H.Leveraging social media networks for classification[J].Data Mining and Knowledge Discovery,2011,23(3):447-478. [8] CAO S H,LU W,XU Q K.GraRep:Learning Graph Representations with Global Structural Information[C]//ACM International on Conference on Information & Knowledge Management.ACM,2015. [9] OU M D,CUI P,PEI J,et al.Asymmetric Transitivity Preserving Graph Embedding[C]//The 22nd ACM SIGKDD International Conference.ACM,2016. [10] WANG D,CUI P,ZHU W.Structural Deep Network Embedding[C]//The 22ndACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:1225-1234. [11] TIAN F,GAO B,CUI Q,et al.Learning deep representationsfor graph clustering[C]//The Twenty-Eighth AAAI Confe-rence on Artificial Intelligence.2014. [12] PEROZZI B,AI-RFOU R,SKIENA S.DeepWalk:Online Lear-ning of Social Representations[C]//The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.ACM,2014:701-710. [13] TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]//The 24th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee.2015:1067-1077. [14] GROVER A,LESKOVEC J.node2vec:Scalable Feature Lear-ning for Networks[C]//The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:855-864. [15] ZHOU C,LIU Y,LIU X,et al.Scalable graph embedding for asymmetric proximity[C]//The 31st AAAI Conference on Artificial Intelligence.2017. [16] ABU-EL-HAIJA S,PEROZZI B,AL-RFOU R.Learning edge representations via low-rank asymmetric projections[C]//The 2017 ACM on Conference on Information and Knowledge Mana-gement.ACM,2017:1787-1796. [17] ABU-EL-HAIJA S,PEROZZI B,AL-RFOU R,et al.WatchYour Step:Learning Node Embeddings via Graph Attention[C]//Neural Information Processing Systems (NIPS).2018:9180-9190. [18] SUN J,AJWANI D,NICHOLSON P K,et al.Breaking Cycles in Noisy Hierarchies[C]//the 2017 ACM on Web Science Conference.ACM,2017:151-160. [19] HERBRICH R,MINKA T,GRAEPEL T.TrueSkill:A Bayesian Skill Rating System[C]//Neural Information Processing Systems (NIPS).2007. [20] GUPTE M,SHANKAR P,LI J,et al.Finding Hierarchy in Directed Online Social Networks[C]//The 20th International Conference on World Wide Web(WWW 2011).Hyderabad,India,DBLP,2011. |
[1] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[2] | HUANG Li, ZHU Yan, LI Chun-ping. Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(9): 76-82. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | LI Zong-min, ZHANG Yu-peng, LIU Yu-jie, LI Hua. Deformable Graph Convolutional Networks Based Point Cloud Representation Learning [J]. Computer Science, 2022, 49(8): 273-278. |
[5] | HUANG Pu, DU Xu-ran, SHEN Yang-yang, YANG Zhang-jing. Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation [J]. Computer Science, 2022, 49(6A): 407-411. |
[6] | LI Yong, WU Jing-peng, ZHANG Zhong-ying, ZHANG Qiang. Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism [J]. Computer Science, 2022, 49(4): 43-48. |
[7] | ZHAO Xue-lei, JI Xin-sheng, LIU Shu-xin, LI Ying-le, LI Hai-tao. Link Prediction Method for Directed Networks Based on Path Connection Strength [J]. Computer Science, 2022, 49(2): 216-222. |
[8] | JIANG Zong-li, FAN Ke, ZHANG Jin-li. Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(1): 133-139. |
[9] | WANG Ying-li, JIANG Cong-cong, FENG Xiao-nian, QIAN Tie-yun. Time Aware Point-of-interest Recommendation [J]. Computer Science, 2021, 48(9): 43-49. |
[10] | ZHAO Jin-long, ZHAO Zhong-ying. Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network [J]. Computer Science, 2021, 48(8): 72-79. |
[11] | YE Hong-liang, ZHU Wan-ning, HONG Lei. Music Style Transfer Method with Human Voice Based on CQT and Mel-spectrum [J]. Computer Science, 2021, 48(6A): 326-330. |
[12] | HU Xin-tong, SHA Chao-feng, LIU Yan-jun. Post-processing Network Embedding Algorithm with Random Projection and Principal Component Analysis [J]. Computer Science, 2021, 48(5): 124-129. |
[13] | YANG Ru-han, DAI Yi-ru, WANG Jian, DONG Jin. Humans-Cyber-Physical Ontology Fusion of Industry Based on Representation Learning [J]. Computer Science, 2021, 48(5): 190-196. |
[14] | CHEN Heng, WANG Wei-mei, LI Guan-yu, SHI Yi-ming. Knowledge Graph Completion Model Using Quaternion as Relational Rotation [J]. Computer Science, 2021, 48(5): 225-231. |
[15] | QIAN Sheng-sheng, ZHANG Tian-zhu, XU Chang-sheng. Survey of Multimedia Social Events Analysis [J]. Computer Science, 2021, 48(3): 97-112. |
|