Computer Science ›› 2022, Vol. 49 ›› Issue (9): 64-69.doi: 10.11896/jsjkx.220500196
• Database & Big Data & Data Science • Previous Articles Next Articles
SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei
CLC Number:
[1]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:701-710. [2]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:855-864. [3]NARAYANAN A,CHANDRAMOHAN M,VENKATESANR,et al.graph2vec:Learning distributed representations of graphs[J].arXiv:1707.05005,2017. [4]WANG D,CUI P,ZHU W.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1225-1234. [5]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.2015:1067-1077. [6]CHEN H,PEROZZI B,HU Y,et al.Harp:Hierarchical representation learning for networks[J].arXiv:1706.07845,2017. [7]MENG D Y,JIA Y M,DU J P,et al.Data-driven control for rela-tive degree systems via iterative learning[J].IEEE Transactions on Neural Networks,2011,22(12):2213-2225. [8]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [9]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [10]HAMILTON W L,YING R,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [11]WANG H,LESKOVEC J.Unifying graph convolutional neural networks and label propagation[J].arXiv:2002.06755,2020. [12]ZHANG F,BU T M.CN-Motifs Perceptive Graph Neural Networks[J].IEEE Access,2021,9:151285-151293. [13]FANG Y K,DENG W H,DU J P,et al.Identity-aware Cy-cleGAN for face photo-sketch synthesis and recognition[J].Pattern Recognition,2020,102:1-36. [14]LUAN S,HUA C,LU Q,et al.Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?[J].arXiv:2109.05641,2021. [15]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneousnetworks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144. [16]SHANG J,QU M,LIU J,et al.Meta-path guided embedding for similarity search in large-scale heterogeneous information networks[J].arXiv:1610.09769,2016. [17]XUE Z,DU J P,DU D W,et al.Deep low-rank subspace ensemble for multi-view clustering[J].Information Sciences,2019,482:210-227. [18]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032. [19]FU X,ZHANG J,MENG Z,et al.Magnn:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of the Web Conference.2020:2331-2341. [20]ZHANG C,SONG D,HUANG C,et al.Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:793-803. [21]HU W M,GAO J,LI B,et al.Anomaly detection using localkernel density estimation and context-based regression[J].IEEE Transactions on Knowledge and Data Engineering,2018,32(2):218-233. [22]HONG H,GUO H,LIN Y,et al.An attention-based graph neu-ral network for heterogeneous structural learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(4):4132-4139. [23]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [24]HU Z,DONG Y,WANG K,et al.Heterogeneous graph transformer[C]//Proceedings of the Web Conference.2020:2704-2710. [25]VELICKOVIC P,FEDUS W,HAMILTON W L,et al.DeepGraph Infomax[J].ICLR (Poster),2019,2(3):4. [26]HJELM R D,FEDOROV A,LAVOIE-MARCHILDON S,et al.Learning deep representations by mutual information estimation and maximization[J].arXiv:1808.06670,2018. [27]LI W L,JIA Y M,DU J P.Variance-constrained state estimation for nonlinearly coupled complex networks[J].IEEE Transactions on Cybernetics,2017,48(2):818-824. [28]REN Y,LIU B,HUANG C,et al.Heterogeneous deep graph infomax[J].arXiv:1911.08538,2019. [29]MAVROMATIS C,KARYPIS G.Graph InfoClust:Leveraging cluster-level node information for unsupervised graph representation learning[J].arXiv:2009.06946,2020. |
[1] | HUANG Li, ZHU Yan, LI Chun-ping. Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(9): 76-82. |
[2] | LI Yong, WU Jing-peng, ZHANG Zhong-ying, ZHANG Qiang. Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism [J]. Computer Science, 2022, 49(4): 43-48. |
[3] | ZHAO Xue-lei, JI Xin-sheng, LIU Shu-xin, LI Ying-le, LI Hai-tao. Link Prediction Method for Directed Networks Based on Path Connection Strength [J]. Computer Science, 2022, 49(2): 216-222. |
[4] | HOU Hong-xu, SUN Shuo, WU Nier. Survey of Mongolian-Chinese Neural Machine Translation [J]. Computer Science, 2022, 49(1): 31-40. |
[5] | CHEN Heng, WANG Wei-mei, LI Guan-yu, SHI Yi-ming. Knowledge Graph Completion Model Using Quaternion as Relational Rotation [J]. Computer Science, 2021, 48(5): 225-231. |
[6] | HU Xin-tong, SHA Chao-feng, LIU Yan-jun. Post-processing Network Embedding Algorithm with Random Projection and Principal Component Analysis [J]. Computer Science, 2021, 48(5): 124-129. |
[7] | GONG Zhui-fei, WEI Chuan-jia. Link Prediction of Complex Network Based on Improved AdaBoost Algorithm [J]. Computer Science, 2021, 48(3): 158-162. |
[8] | LI Xin-chao, LI Pei-feng, ZHU Qiao-ming. Directed Network Representation Method Based on Hierarchical Structure Information [J]. Computer Science, 2021, 48(2): 100-104. |
[9] | GONG Zhui-fei, WEI Chuan-jia. Complex Network Link Prediction Method Based on Topology Similarity and XGBoost [J]. Computer Science, 2021, 48(12): 226-230. |
[10] | ZHAO Man, ZHAO Jia-kun, LIU Jin-nuo. Link Prediction Algorithm Based on Ego Networks Structure and Network Representation Learning [J]. Computer Science, 2021, 48(11A): 211-217. |
[11] | WANG Wen-bo, LUO Heng-li. Complete Graph Face Clustering Based on Graph Convolution Network [J]. Computer Science, 2021, 48(11A): 275-277. |
[12] | HUANG Shou-meng. Heterogeneous Network Link Prediction Model Based on Supervised Learning [J]. Computer Science, 2021, 48(11A): 111-116. |
[13] | FU Ying, WANG Hong-ling, WANG Zhong-qing. Scientific Paper Summarization Using Word-Section Association [J]. Computer Science, 2021, 48(10): 59-66. |
[14] | WANG Hui, LE Zi-chun, GONG Xuan, WU Yu-kun, ZUO Hao. Review of Link Prediction Methods Based on Feature Classification [J]. Computer Science, 2020, 47(8): 302-312. |
[15] | LI Jin-xia, ZHAO Zhi-gang, LI Qiang, LV Hui-xian and LI Ming-sheng. Improved Locality and Similarity Preserving Feature Selection Algorithm [J]. Computer Science, 2020, 47(6A): 480-484. |
|