Computer Science ›› 2021, Vol. 48 ›› Issue (4): 78-84.doi: 10.11896/jsjkx.200400023
• Database & Big Data & Data Science • Previous Articles Next Articles
XIONG Xu-dong1, DU Sheng-dong1,2,3, XIA Wan-jun1, LI Tian-rui1,2,3
CLC Number:
[1]CHENG X Q,JIN X L,WANG Y Z,et al.Survey on Big Data System and Analytic Technology[J].Journal of Software,2014,25(9):1889-1908. [2]WANG G X,LIU H P.Survey of personalized recommendation system[J].Computer Engineering and Applications,2012,48(7):66-76. [3]HUANG L W,JIANG B T,LV S Y,et al.Survey on Deep Learning Based Recommender System[J].Journal of Computer Science and Technology,2018,41(7):1619-1647. [4]ZHOU B.Research on Relationship Between Bipartite Network Recommendation Algorithm and Collaborative Filtering Algorithm[J].Computer Science,2019,46(S2):163-166,177. [5]ZHOU T,REN J,MEDO M,et al.Bipartite network projection and personal recommendation[J].Physical Review E,2007,76(4):046115. [6]ZHOU B,YANG C F.The Research Progress of Recommendation Algorithm Based on Bipartite Network[J].Technology Intelligence Engineering,2016,2(1):77-90. [7]ZHOU J,CUI G,ZHANG Z,et al.Graph Neural Networks:A Review of Methods and Applications[J].arXiv:1812.08434,2018. [8]DEFFERRARD M,BRESSON X,VANDERGHEYNST P,et al.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Neural Information Processing Systems.2016:3844-3852. [9]KIPF T,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016. [10]WANG X,HE X,WANG M,et al.Neural Graph Collaborative Filtering[C]//Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [11]BERG R,KIPF T N,WELLING M.Graph convolutional matrix completion[J].arXiv:1706.02263,2017. [12]ZHENG L,LU C,JIANG F,et al.Spectral collaborative filtering[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:311-319. [13]HAMILTON W L,YING Z,LESKOVEC J,et al.InductiveRepresentation Learning on Large Graphs[C]//Neural Information Processing Systems.2017:1024-1034. [14]WU L,SUN P,HONG R,et al.SocialGCN:An Efficient Graph Convolutional Network based Model for Social Recommendation[J].arXiv:1811.02815,2018. [15]WU L,SUN P,FU Y,et al.A Neural Influence Diffusion Model for Social Recommendation[C]//Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:235-244. [16]YING R,HE R,CHEN K,et al.Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]//Proceedings of the Knowledge Discovery and Data Mining.2018:974-983. [17]DENG Z H,HUANG L,WANG C D,et al.Deepcf:A unified framework of representation learning and matching function learning in recommender system[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:61-68. [18]XUE F,HE X,WANG X,et al.Deep Item-based Collaborative Filtering for Top-N Recommendation[J].ACM Transactions on Information Systems,2019,37(3):1-25. [19]ELKAHKY A,SONG Y,HE X,et al.A Multi-View DeepLearning Approach for Cross Domain User Modeling in Recommendation Systems[C]//Proceedings of the Web Conference.2015:278-288. [20]COVINGTON P,ADAMS J,SARGIN E.Deep neural networks for Youtube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems.ACM,2016:191-198. [21]XU Z,CHEN C,LUKASIEWICZ T,et al.Tag-aware personalized recommendation using a deep-semantic similarity model with negative sampling[C]//Proceedings of the 25th ACM Conference on Information and Knowledge Management.ACM,2016:1921-1924. [22]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.ACM,2016:7-10. [23]XUE H,DAI X,ZHANG J,et al.Deep matrix factorizationmodels for recommender systems[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2017:3203-3209. [24]HE X,LIAO L,ZHANG H,et al.Neural Collaborative Filtering[C]//Proceedings of the Web Conference.2017:173-182. [25]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//Proceedings of the International Conference on Learning Representations.2018:1-12. [26]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Neural Information Processing Systems.2017:6000-6010. [27]GILMER J,SCHOENHOLZ S,RILEY P,et al.Neural message passing for Quantum chemistry[C]//Proceedings of the International Conference on Machine Learning.2017:1263-1272. [28]HE X,ZHANG H,KAN M,et al.Fast Matrix Factorization for Online Recommendation with Implicit Feedback[C]//Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval.2016:549-558. |
[1] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[2] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[3] | LI Jian-zhi, WANG Hong-ling, WANG Zhong-qing. Automatic Generation of Patent Summarization Based on Graph Convolution Network [J]. Computer Science, 2022, 49(6A): 172-177. |
[4] | SHAO Yan-hua, LI Wen-feng, ZHANG Xiao-qiang, CHU Hong-yu, RAO Yun-bo, CHEN Lu. Aerial Violence Recognition Based on Spatial-Temporal Graph Convolutional Networks and Attention Model [J]. Computer Science, 2022, 49(6): 254-261. |
[5] | ZHAO Xiao-hu, YE Sheng, LI Xiao. Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction [J]. Computer Science, 2022, 49(6): 269-275. |
[6] | LI Zi-yi, ZHOU Xia-bing, WANG Zhong-qing, ZHANG Min. Stance Detection Based on User Connection [J]. Computer Science, 2022, 49(5): 221-226. |
[7] | GAO Yue, FU Xiang-ling, OUYANG Tian-xiong, CHEN Song-ling, YAN Chen-wei. EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network [J]. Computer Science, 2022, 49(4): 30-36. |
[8] | TAN Zhen-qiong, JIANG Wen-Jun, YUM Yen-na-cherry, ZHANG Ji, YUM Peter-tak-shing, LI Xiao-hong. Personalized Learning Task Assignment Based on Bipartite Graph [J]. Computer Science, 2022, 49(4): 269-281. |
[9] | ZHOU Hai-yu, ZHANG Dao-qiang. Multi-site Hyper-graph Convolutional Neural Networks and Application [J]. Computer Science, 2022, 49(3): 129-133. |
[10] | LI Hao, ZHANG Lan, YANG Bing, YANG Hai-xiao, KOU Yong-qi, WANG Fei, KANG Yan. Fine-grained Sentiment Classification of Chinese Microblogs Combining Dual Weight Mechanismand Graph Convolutional Neural Network [J]. Computer Science, 2022, 49(3): 246-254. |
[11] | PAN Zhi-hao, ZENG Bi, LIAO Wen-xiong, WEI Peng-fei, WEN Song. Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2022, 49(3): 294-300. |
[12] | XIE Yu, YANG Rui-ling, LIU Gong-xu, LI De-yu, WANG Wen-jian. Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph [J]. Computer Science, 2022, 49(2): 62-68. |
[13] | MIAO Qi-guang, XIN Wen-tian, LIU Ru-yi, XIE Kun, WANG Quan, YANG Zong-kai. Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis [J]. Computer Science, 2022, 49(2): 156-161. |
[14] | ZHANG Hu, BAI Ping. Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification [J]. Computer Science, 2022, 49(2): 279-284. |
[15] | GAN Chuang, WU Gui-xing, ZHAN Qing-yuan, WANG Peng-kun, PENG Zhi-lei. Multi-scale Gated Graph Convolutional Network for Skeleton-based Action Recognition [J]. Computer Science, 2022, 49(1): 181-186. |
|