Computer Science ›› 2022, Vol. 49 ›› Issue (8): 205-216.doi: 10.11896/jsjkx.210800064
• Artificial Intelligence • Previous Articles Next Articles
TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo
CLC Number:
[1]WANG J,WANG Z,ZHANG D,et al.Combining knowledge with deep convolutional neural networks for short text classification[C]//Proceedings of the 26th International Joint Confe-rence on Artificial Intelligence.2017:2915-2921. [2]HU X J,LIU L,QIU N J.A Novel Spam Categorization Algorithm Based on Active Learning Method and Negative Selection Algorithm[J].Dian Zi Xue Bao/Acta Electronica Sinica,2018,46(1):203-209. [3]MAAS A,DALY R E,PHAM P T,et al.Learning word vectors for sentiment analysis[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies.2011:142-150. [4]SU J S,ZHANG B F,XU X.Advances in Machine Learning Based Text Categorization[J].Ruan Jian Xue Bao/Journal of Software,2006,17(9):1848-1859. [5]WU Y J,LI J,SONG C F,et al.High Utility Neural Networks for Text Classification[J].Dian Zi Xue Bao:Acta Electronica Sinica,2020,48(2):279-284. [6]COVER T,HART P.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27. [7]JOACHIMS T.Text categorization with support vector ma-chines:Learning with many relevant features[C]//European Conference on Machine Learning.Berlin:Springer,1998:137-142. [8]WANG S I,MANNING C D.Baselines and bigrams:Simple,good sentiment and topic classification[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics.2012:90-94. [9]KALCHBRENNER N,GREFENSTETTE E,BLUNSOM P.A convolutional neural network for modelling sentences[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.2014:655-665. [10]ZHU X,SOBHANI P,GUO H.Long short-term memory over recursive structures[C]//Proceedings of the 32ndInternational Conference on Machine Learning.2015:1604-1612. [11]KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:1746-1751. [12]ZHANG X,ZHAO J,LECUN Y.Character-level convolutional networks for text classification[C]//Advances in Neural Information Processing Systems.2015:649-657. [13]LIU P,QIU X,HUANG X.Recurrent Neural Network for Text Classification with Multi-Task Learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.2016:2873-2879. [14]YANG Z,YANG D,DYER C,et al.Hierarchical Attention Networks for Document Classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:1480-1489. [15]BAHDANAU D,CHO K,BENGIO Y.Neural Machine Translation by Jointly Learning to Align and Translate[J].arXiv:1409.0473,2014. [16]XU B B,CEN K T,HUANG J J,et al.A Survey on Graph Convolutional Neural Network[J].Ji Suan Ji Xue Bao/Chinese Journal of Computers,2020,43(5):755-780. [17]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [18]ZHANG Z,CUI P,ZHU W.Deep Learning on Graphs:A Survey[J].IEEE Transactions on Knowledge and Data Enginee-ring,2022,34(1):249-270. [19]ZHOU J,CUI G,HU S,et al.Graph neural networks:A review of methods and applications[J].AI Open,2020,1:57-81. [20]MINAEE S,KALCHBRENNER N,CAMBRIA E,et al.DeepLearning Based Text Classification:A Comprehensive Review[J].arXiv:2004.03705v1,2020. [21]LI Q,PENG H,LI J,et al.A Survey on Text Classification:From Shallow to Deep Learning[J].arXiv:2008.00364,2020. [22]KIPF T N,WELLING M.A PyTorch implementation of GCN[EB/OL].https://github.com/tkipf/pygcn. [23]HAMILTON W,YING Z,LESKOVEC J.A PyTorch imple-mentation of GraphSage[EB/OL].https://github.com/williamleif/graphsage-simple/. [24]VELIKOVI P,CUCURULL G,CASANOVA A,et al.A Tensorflow implementation of GAT[EB/OL].https://github.com/PetarV-/GAT. [25]CHEN J,MA T,XIAO C.A Tensorflow implementation ofFastGCN[EB/OL].https://github.com/matenure/FastGCN. [26]WANG M,ZHENG D,YE Z,et al.A PyTorch implementation of JKNet [EB/OL].https://github.com/dmlc/dgl/tree/master/examples/pytorch/jknet. [27]WU F,ZHANG T,SOUZA A,et al.A PyTorch implementation of SGC[EB/OL].https://github.com/Tiiiger/SGC. [28]YAO L,MAO C,LUO Y.A Tensorflow implementation of Text-gcn[EB/OL].https://github.com/yao8839836/text_gcn. [29]GAO H,CHEN Y,JI S.A Tensorflow implementation ofhConv-gPool-Net[EB/OL].https://github.com/HongyangGao/hConv-gPool-Net. [30]KLICPERA J,BOJCHEVSKI A,GUNNEMANN S.Tensor-Flow and PyTorch implementations of PPNP and APPNP[EB/OL].https://github.com/klicperajo/ppnp. [31]HUANG L,MA D,LI S,et al.A PyTorch implementation of Text-level GCN[EB/OL].https://github.com/mojave-pku/TextLevelGCN. [32]HU L,YANG T,SHI C,et al.A PyTorch implementation ofHAGT[EB/OL].https://github.com/ytc272098215/HGAT. [33]LIU X,YOU X,ZHANG X,et al.A Tensorflow implementation of TensorGCN[EB/OL].https://github.com/THUMLP/TensorGCN. [34]RONG Y,HUANG W,XU T,et al.A PyTorch implementation of DropEdge[EB/OL].https://github.com/DropEdge/Drop-Edge. [35]ZHANG J,MENG L.A PyTorch implementation of GResNet[EB/OL].https://github.com/jwzhanggy/GResNet. [36]ZHAO L,AKOGLU L.A PyTorch implementation of PairNorm[EB/OL].https://github.com/LingxiaoShawn/PairNorm. [37]CHEN G,TIAN Y,SONG Y.A PyTorch implementation ofD-GCN[EB/OL].https://github.com/cuhksz-nlp/DGSA. [38]DING K,WANG J,LI J,et al.A PyTorch implementation of HyperGAT[EB/OL].https://github.com/kaize0409/HyperGAT_TextClassification. [39]ZHANG Y,YU X,CUI Z,et al.A Tensorflow implementation of TextING[EB/OL].https://github.com/CRIPAC-DIG/Text-ING. [40]YUAN L,WANG J,YU L,et al.A PyTorch implementation of G-ATT[EB/OL].https://github.com/YuanLi95/GATT-For-Aspect. [41]FENG W,ZHANG J,DONG Y,et al.A PyTorch implementation of GRAND[EB/OL].https://github.com/THUDM/GRAND. [42]ZHOU K,HUANG X,LI Y,et al.A PyTorch implementation of DGN[EB/OL].https://github.com/Kaixiong-Zhou/DGN. [43]CHEN M,WEI Z,HUANG Z,et al.A PyTorch implementation of GCNII[EB/OL].https://github.com/chennnM/GCNII. [44]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [45]CHUNG F R K.Spectral Graph Theory[EB/OL].http://www.ams.org/books/cbms/092/. [46]SANDRYHAILA A,MOURA J M F.Discrete Signal Proces-sing on Graphs[J].IEEE Trans.on Signal Processing,2014,62(12):3042-3054. [47]SHUMAN DI,NARANG S K,FROSSARD P,et al.The Emerging Field of Signal Processing on Graphs:Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains[J].IEEE Signal Processing Magazine,2013,30(3):83-98. [48]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[C]//Advances in Neural Information Processing Systems.2016:3844-3852. [49]HAMMOND D K,VANDERGHEYNST P,GRIBONVAL R.Wavelets on graphs via spectral graph theory[J].Applied and Computational Harmonic Analysis,2011,30(2):129-150. [50]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//Proceedings of the 5th International Conference on Learning Representations.2017:1-13. [51]LI Y,TARLOW D,BROCKSCHMIDT M,et al.Gated graph sequence neural networks[J].arXiv:1511.05493,2016. [52]YUN S,JEONG M,KIM R,et al.Graph Transformer Networks[C]//Advances in Neural Information Processing Systems.2019:11960-11970. [53]YAO L,MAO C,LUO Y.Graph Convolutional Networks for Text Classification[C]//Proceedings of the 33rd AAAI Confe-rence on Artificial Intelligence.2019:7370-7377. [54]CHURCH K W,HANKS P.Word association norms,mutual information,and lexicography[J].Computational linguistics,1990,16(1):22-29. [55]ZAANEN M,KANTERS P.Automatic Mood Classificationusing TF*IDF based on Lyrics[C]//Proceedings of the 11th International Society for Music Information Retrieval Confe-rence.2010:75-80. [56]LIU X,YOU X,ZHANG X,et al.Tensor graph convolutional networks for text classification[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.2020:8409-8416. [57]WU F,ZHANG T,SOUZA A,et al.Simplifying graph convolutional networks[C]//Proceedings of 36th International Confe-rence on Machine Learning.2019:6861-6871. [58]HUANG L,MA D,LI S,et al.Text Level Graph Neural Network for Text Classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.2019:3442-3448. [59]GILMER J,SCHOENHOLZ S S,RILEY P F,et al.Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning.2017:1263-1272. [60]GAO H,CHEN Y,JI S.Learning graph pooling and hybrid convolutional operations for text representations[C]//Proceedings of the World Wide Web Conference.2019:2743-2749. [61]VELIKOVI P,CUCURULL G,CASANOVA A,et al.GraphAttention Networks[J].arXiv:1710.10903,2018. [62]HU L,YANG T,SHI C,et al.Heterogeneous Graph AttentionNetworks for Semi-supervised Short Text Classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processingand the 9th International Joint Conference on Natural Language Processing.2019:4821-4830. [63]YUAN L,WANG J,YU L,et al.Graph Attention Networkwith Memory Fusion for Aspect-level Sentiment Analysis[C]//Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing.2020:27-36. [64]CHEN G,TIAN Y,SONG Y.Joint Aspect Extraction and Sentiment Analysis with Directional Graph Convolutional Networks[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:272-279. [65]DING K,WANG J,LI J,et al.Be More with Less:Hypergraph Attention Networks for Inductive Text Classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:4927-4936. [66]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022. [67]ZHANG Y,YU X,CUI Z,et al.Every Document Owns ItsStructure:Inductive Text Classification via Graph Neural Networks[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics.2020:334-339. [68]YUE Z,QI L,SONG L.Sentence-State LSTM for Text Representation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:317-327. [69]LI W,LI S,MA S,et al.Recursive Graphical Neural Networks for Text Classification[J].arXiv:1909.08166,2020. [70]HUANG B,CARLEY K M.Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing.2019:5469-5477. [71]ZHANG H,ZHANG J.Text Graph Transformer for Document Classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:8322-8327. [72]LI Q,HAN Z,WU X.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.2018:3538-3545. [73]KLICPERA J,BOJCHEVSKI A,GUNNEMANN S.PredictThen Propagate:Graph Neural Networks Meet Personalized Pagerank[J].arXiv:1810.05997,2019. [74]PAGE L,BRIN S,MOTWANI R,et al.The pagerank citation ranking:Bringing order to the web[EB/OL].http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf. [75]RONG Y,HUANG W,XU T,et al.DropEdge:Towards Deep Graph Convolutional Networks on Node Classification[C]//Proceedings of the International Conference on Learning Representations.2020:1-17. [76]FENG W,ZHANG J,DONG Y,et al.Graph Random NeuralNetwork for Semi-Supervised Learning on Graphs[C]//Advances in Neural Information Processing Systems.2020:22092-22103. [77]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Computer Socie-ty Conference on Computer Vision and Pattern Recognition.2016:770-778. [78]XU K,LI C,TIAN Y,et al.Representation Learning on Graphs with Jumping Knowledge Networks[C]//Proceedings of the 35th International Conference on Machine Learning.2018:5449-5458. [79]ZHANG J,MENG L.GResNet:GraphResidual Network for Reviving Deep GNNs from Suspended Animation[J].arXiv:1909.05729,2020. [80]CHEN M,WEI Z,HUANG Z,et al.Simple and Deep Graph Convolutional Networks[C]//Proceedings of 37th International Conference on Machine Learning.2020:1725-1735. [81]HEN D,LIN Y,LI W,et al.Measuring and relieving the over-smoothing problem for graph neural networks from the topolo-gical view[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.2020:3438-3445. [82]DWIVEDI V,JOSHI C,LAURENT T,et al.Benchmarkinggraph neural networks[J].arXiv:2003.00982,2020. [83]ZHAO L,AKOGLU L.Pairnorm:Tackling oversmoothing inGNNS[J].arXiv:1909.12223v1,2020. [84]ZHOU K,HUANG X,LI Y,et al.Towards Deeper Graph Neural Networks with Differentiable Group Normalization[C]//Advances in Neural Information Processing Systems Conference.2020:1-12. [85]SEN P,NAMATA G,BILGIC M,et al.Collective classification in network data[J].AI magazine,2008,29(3):93-106. [86]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems.2017:1024-1034. [87]CHEN J,MA T,XIAO C.FastGCN:fast learning with graph convolutional networks via importance sampling[J].arXiv:1801.10247,2018. [88]YANG Z,COHEN W,SALAKHUTDINOV R.Revisiting semi-supervised learning with graph embeddings[C]//Proceedings of the International Conference on Machine Learning.2016:40-48. |
[1] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[2] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[3] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[4] | SHI Dian-xi, ZHAO Chen-ran, ZHANG Yao-wen, YANG Shao-wu, ZHANG Yong-jun. Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning [J]. Computer Science, 2022, 49(8): 247-256. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[7] | KANG Yan, WU Zhi-wei, KOU Yong-qi, ZHANG Lan, XIE Si-yu, LI Hao. Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution [J]. Computer Science, 2022, 49(6A): 150-158. |
[8] | SHAO Xin-xin. TI-FastText Automatic Goods Classification Algorithm [J]. Computer Science, 2022, 49(6A): 206-210. |
[9] | ZHAO Xiao-hu, YE Sheng, LI Xiao. Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction [J]. Computer Science, 2022, 49(6): 269-275. |
[10] | DENG Zhao-yang, ZHONG Guo-qiang, WANG Dong. Text Classification Based on Attention Gated Graph Neural Network [J]. Computer Science, 2022, 49(6): 326-334. |
[11] | LIU Shuo, WANG Geng-run, PENG Jian-hua, LI Ke. Chinese Short Text Classification Algorithm Based on Hybrid Features of Characters and Words [J]. Computer Science, 2022, 49(4): 282-287. |
[12] | ZHONG Gui-feng, PANG Xiong-wen, SUI Dong. Text Classification Method Based on Word2Vec and AlexNet-2 with Improved AttentionMechanism [J]. Computer Science, 2022, 49(4): 288-293. |
[13] | ZHOU Hai-yu, ZHANG Dao-qiang. Multi-site Hyper-graph Convolutional Neural Networks and Application [J]. Computer Science, 2022, 49(3): 129-133. |
[14] | DENG Wei-bin, ZHU Kun, LI Yun-bo, HU Feng. FMNN:Text Classification Model Fused with Multiple Neural Networks [J]. Computer Science, 2022, 49(3): 281-287. |
[15] | PAN Zhi-hao, ZENG Bi, LIAO Wen-xiong, WEI Peng-fei, WEN Song. Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2022, 49(3): 294-300. |
|