Computer Science ›› 2021, Vol. 48 ›› Issue (7): 178-183.doi: 10.11896/jsjkx.200500145
• Database & Big Data & Data Science • Previous Articles Next Articles
CHEN Jing-jie1,2,3, WANG Kun2,4
CLC Number:
[1]MICHAELOWA A.Tackling CO2 emissions from international aviation:challenges and opportunities generated by the market mechanism ‘CORSIA’[J].EDA Insight,2016,2(11):1-7. [2]STROUHAL M.CORSIA-Carbon Offsetting and ReductionScheme for International Aviation[J].MAD-Magazine of Aviation Development,2020,8(1):21-26. [3]VILAR J,ANEIROS G,RAÑA P.Prediction intervals for electricity demand and price using functional data[J].International Journal of Electrical Power & Energy Systems,2018,96(3):457-472. [4]NOWOTARSKI J,WERON R.Computing electricity spot price prediction intervals using quantile regression and forecast averaging[J].Computational Statistics,2015,30(3):791-803. [5]MENG Y,ZHANG B,YAN Y M.Prediction Interval Estimation Model of User Concurrent Requests for Cloud Service in Cloud Environment[J].Chinese Journal of Computers,2017,40(2):378-396. [6]ROY M H,LAROCQUE D.Prediction intervals with random forests[J].Statistical Methods in Medical Research,2020,29(1):205-229. [7]VERBOIS H,RUSYDI A,THIERY A.Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting[J].Solar Energy,2018,173:313-327. [8]PENG Z,WANG L Q,GUO H.Parallel Text Categorization of Random Forest[J].Computer Science,2018,45(12):148-152. [9]ZHANG H,ZIMMERMAN J,NETTLETON D,et al.Random forest prediction intervals[J].The American Statistician,2020,74(4):392-406. [10]HUANG J,ZHU L,FAN B,et al.Large-Scale Price Interval Prediction at OTA Sites[J].IEEE Access,2018,6:69807-69817. [11]CHEN T,GUESTRIN C.XGBoost:A scalable tree boostingsystem[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining.2016:785-794. [12]KAUR H,PANNU H S,MALHI A K.A systematic review on imbalanced data challenges in machine learning:Applications and solutions[J].ACM Computing Surveys (CSUR),2019,52(4):1-36. [13]GUO H X,LI Y J,SHANG J,et al.Learning from class-imba-lanced data:Review of methods and applications[J].Expert Systems With Applications,2016,73:220-239. [14]ZHENG Z,CAI Y,LI Y.Oversampling method for imbalanced classification[J].Computing and Informatics,2016,34(5):1017-1037. [15]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357. [16]FERNÁNDEZ A,GARCIA S,HERRERA F,et al.SMOTE for learning from imbalanced data:progress and challenges,marking the 15-year anniversary[J].Journal of Artificial Intelligence Research,2018,61:863-905. [17]KOENKER R,BASSETT J G.Regression quantiles.Econo-metrica[J].Journal of the Econometric Society,1978,46(1) 1:33-50. [18]QUAN H,KHOSRAVI A,YANG D,et al.A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(11):4582-4599. |
[1] | LIN Xi, CHEN Zi-zhuo, WANG Zhong-qing. Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning [J]. Computer Science, 2022, 49(6A): 144-149. |
[2] | SUN Fu-quan, LIANG Ying. Identification of 6mA Sites in Rice Genome Based on XGBoost Algorithm [J]. Computer Science, 2022, 49(6A): 309-313. |
[3] | ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao. SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm [J]. Computer Science, 2022, 49(6A): 562-570. |
[4] | DONG Qi-da, WANG Zhe, WU Song-yang. Feature Fusion Framework Combining Attention Mechanism and Geometric Information [J]. Computer Science, 2022, 49(5): 129-134. |
[5] | LI Jing-tai, WANG Xiao-dan. XGBoost for Imbalanced Data Based on Cost-sensitive Activation Function [J]. Computer Science, 2022, 49(5): 135-143. |
[6] | JIANG Hao-chen, WEI Zi-qi, LIU Lin, CHEN Jun. Imbalanced Data Classification:A Survey and Experiments in Medical Domain [J]. Computer Science, 2022, 49(1): 80-88. |
[7] | ZHANG Ren-zhi, ZHU Yan. Malicious User Detection Method for Social Network Based on Active Learning [J]. Computer Science, 2021, 48(6): 332-337. |
[8] | LIU Quan-ming, LI Yin-nan, GUO Ting, LI Yan-wei. Intrusion Detection Method Based on Borderline-SMOTE and Double Attention [J]. Computer Science, 2021, 48(3): 327-332. |
[9] | GONG Zhui-fei, WEI Chuan-jia. Complex Network Link Prediction Method Based on Topology Similarity and XGBoost [J]. Computer Science, 2021, 48(12): 226-230. |
[10] | WANG Mao-guang, YANG Hang. Risk Control Model and Algorithm Based on AP-Entropy Selection Ensemble [J]. Computer Science, 2021, 48(11A): 71-76. |
[11] | WANG Xiao-di, LIU Xin, YU Xiao. Adaptive Frequency Domain Model for Multivariate Time Series Forecasting [J]. Computer Science, 2021, 48(11A): 204-210. |
[12] | LU Shu-xia, ZHANG Zhen-lian. Imbalanced Data Classification of AdaBoostv Algorithm Based on Optimum Margin [J]. Computer Science, 2021, 48(11): 184-191. |
[13] | CUI Wei, JIA Xiao-lin, FAN Shuai-shuai and ZHU Xiao-yan. New Associative Classification Algorithm for Imbalanced Data [J]. Computer Science, 2020, 47(6A): 488-493. |
[14] | SONG Ling-ling, WANG Shi-hui, YANG Chao, SHENG Xiao. Application Research of Improved XGBoost in Imbalanced Data Processing [J]. Computer Science, 2020, 47(6): 98-103. |
[15] | ZHAO Rui-jie, SHI Yong, ZHANG Han, LONG Jun, XUE Zhi. Webshell File Detection Method Based on TF-IDF [J]. Computer Science, 2020, 47(11A): 363-367. |
|