Computer Science ›› 2022, Vol. 49 ›› Issue (6A): 562-570.doi: 10.11896/jsjkx.210700106
• Information Security • Previous Articles Next Articles
ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao
CLC Number:
[1] QIAN Z H,WANG Y J.IoT technology and application[J].Acta Electronica Sinica,2012,40(5):1023-1029. [2] QIE G,ZHANG Y.Intelligent Connected Vehicle:A Survey of the Technical Analysis[J].Mobile Communications,2020,44(1):80-85. [3] LI K Q,DAI Y F,LI S B,et al.State-of-the-art and technical trends of intelligent and connected vehicles[J].Journal of Automotive Safety and Energy,2017,8(1):1-14. [4] XUN Y J,LIU J J,ZHAO J.Research on security threat of intelligent connected vehicle[J].Chinese Journal on Internet of Things,2019,3(4):72-81. [5] YANG D,JIANG K,ZHAO D,et al.Intelligent and connected vehicles:Current status and future perspectives[J].Science China-Technological Sciences,2018,61(10):1446-1471. [6] ALNABULSI H,ISLAM R.Protecting code injection attacks in intelligent transportation system[C]//Trust Security and Privacy in Computing and Communications.Piscataway:IEEE Press,2019:799-806. [7] HAO J,HAN G.On the Modeling of Automotive Security:ASurvey of Methods and Perspectives[J].Future Internet,2020,12(11):198. [8] MÜTER M,GROLL A,FREILING F C.A structured approach to anomaly detection for in-vehicle networks[C]//2010 Sixth International Conference on Information Assurance and Security(IAS).IEEE,2010:92-98. [9] HAN J,PEI J,KAMBER M.Data mining:concepts and techniques[M].San Francisco:Elsevier,2011. [10] GUO T,XU Z,YAO X,et al.Robust online time series prediction with recurrent neural networks[C]//2016 IEEE International Conference on Data Science and Advanced Analytics(DSAA).IEEE,2016:816-825. [11] TAYLOR A,LEBLANC S,JAPKOWICZ N.Anomaly detection in automobile control network data with long short-term memory networks[C]//2016 IEEE International Conference on Data Science and Advanced Analytics(DSAA).IEEE,2016:130-139. [12] LIANG J,CHEN J,ZHANG X,et al.One-hot encoding and convolutional neural network based anomaly detection[J].Journal Tsinghua University(Science & Technology),2019,59(7):523-529. [13] ZHU F,WU W,FU Y C,et al.A Dual Deep Network Based Secure Deep Reinforcement Learning Method[J].Chinese Journal of Computers,2019,42(8):1-15. [14] AN T L,WANG C D,YANG C.Research on vehicle bus anomaly detection based on LSTM[J].Journal of Tianjin University of Technology,2020,36(3):6-10. [15] LIU X Q,SHAN C,REN J D,et al.An intrusion detection method based on multi-dimensional optimization of traffic anomaly analysis[J].Netinfo Security,2019,4(1):14-26. [16] LI L J,YU Y,BAI S S,et al.Intrusion Detection Model Based on Double Training Technique[J].Transactions of Beijing Institute of Technology,2017(12):1246-1252. [17] CHAWALA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357. [18] LIN Y.Research on fusion algorithm of extreme learning machine and auto-encoder [D].Changchun:Jilin University,2016. [19] PARK S,SEO S,KIM J.Network intrusion detection usingstacked denoising autoencoder[J].Advanced Science Letters,2017,23(10):9907-9911. [20] VINCENT P,LATOCHELLE H,LAJOIE I,et al.Stacked denoising auto-encoders:learning useful representations in a deep network with a local denoising criterion[J].The Journal of Machine Learning Research,2010,11(12):3371-3408. [21] SUN W J,SHAO S Y,ZHAO R,et al.A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J].Measurement,2016,89:171-178. [22] XING C,MA L,YANG X Q.Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J].Journal of Sensors,2016,2016:1-10. [23] ANDREAS T.Anomaly detection in recordings from in-vehicle networks[J].Big Data and Applications,2014(3):23-29. [24] CRISTIANINI N,TAYLOR J S.An introduction to supportvector machines and other kernel-based learning methods[M].Beijing:Publishing House of Electronics Industry,2004. [25] AMARNATH B,BALAMURUGAN S A A.Review on feature se-lection techniques and its impact for effective data classification using UCI machine learning repository dataset[J].Journal of Engineering Science and Technology,2016,11(11):1639-1646. [26] MOUSTAFA N,SLAY J.UNSW-NB15:a comprehensive data set for network intrusion detection systems(UNSW-NB15 network data set)[C]//Proceedings of the 2015 Military Communications and Information Systems Conference.Canberra,ACT,Australia:IEEE,2015:1-6. [27] GOH J,ADEPU S,JUNEJO K N,et al.A dataset to support research in the design of secure water treatment systems[C]//International Conference on Critical Information Infrastructures Security.Cham:Springer,2016:88-99. [28] AHMED C M,PALLETI V R,MATHUR A P.WADI:a water distribution testbed for research in the design of secure cyber physical systems[C]//Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks.2017:25-28. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[6] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[7] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[8] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[9] | LIU Wei-ming, AN Ran, MAO Yi-min. Parallel Support Vector Machine Algorithm Based on Clustering and WOA [J]. Computer Science, 2022, 49(7): 64-72. |
[10] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[11] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[12] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[13] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[14] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[15] | LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning. Survey on Finger Vein Recognition Research [J]. Computer Science, 2022, 49(6A): 1-11. |
|