Computer Science ›› 2021, Vol. 48 ›› Issue (6): 96-102.doi: 10.11896/jsjkx.200700195
• Database & Big Data & Data Science • Previous Articles Next Articles
DUAN Fei1,2, WANG Hui-min1, ZHANG Chao1,2
CLC Number:
[1]LEE D,SEUNG H S.Algorithms for Non-negative Matrix Factorization [C]//Advances in Neural Information Processing System.2001:556-562. [2]PAATERO P,TAPPER U.Positive matrix factorization:a non-negative factor model with optimal utilization of error estimates of data values[J].Environmetrics,1994,5(2):111-126. [3]LEE D,SEUGN H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401:788-791. [4]LI S,HOU X,ZHANG H.et al.Learning spatially localized,parts-based representation[C]//International Conference on Computer Vision and Pattern Recognition.2001:207-212. [5]WANG H,HUANG H,DING C,et al.Predicting protein-protein interactions from multimodal biological data sources via non-negative matrix factorization[C]//Proceedings of International Conference on Research in Computational Molecular Bio-logy.2012:774-783. [6]COOPER M,FOOTE J.Summarizing video using non-negativesimilarity matrix factorization[C]//Proceedings of IEEE Workshop on Multimedia Signal Processing.2002:25-28. [7]WANG H,HUANG H,DING C.Cross-language web page classification via joint non-negative matrix tri-factorization based dyadic knowledge transfer[C]//Proceedings of Annual ACM SIGIR Conference.2011:933-942. [8]XU W,LIU X,GONG Y.Document clustering based on non-negative matrix factorization[C]//Proceedings of the 26th ACM SIGIR.2003:267-273. [9]LI J,ZHOU G,QIU Y,et al.Deep graph regularized non-negative matrix factorization for multi-view clustering[J].Neurocomputing,2020,390:108-116. [10]LIANG N,YANG Z,LI Z,et al.Semi-supervised multi-viewclustering with graph-regularized partially shared non-negative matrix factorization[J].Knowledge-Based Systems,2020,190:1-10. [11]CHEN G,CHEN X,WANG J,et al.Robust non-negative matrix factorization for link prediction in complex networks using manifold regularization and sparse learning[J].Physica A:Statistical Mechanics and its Applications,2020,539:1-18. [12]YE W,WANG H,YAN S,et al.Nonnegative matrix factorization for clustering ensemble based on dark knowledge[J].Knowledge-Based Systems,2019,163:624-631. [13]KONG D,DING C,HUANG H.Robust nonnegative matrix factorization using l21-norm[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Mana-gement.2015:871-880. [14]LAM E Y.Non-negative matrix factorization for images withLaplacian noise[C]//Proceedings IEEE Asia Pacific Conference on Circuits and Systems.2008:798-801. [15]GUAN N,TAO D,LUO Z,et al.MahNMF:Manhattan non-negative matrix factorization [EB/OL].(2012-07-14)[2012-07-14].https://arxiv.org/abs/1207.3438. [16]NESTEROV Y.Smooth minimization of non-smooth functions[J].Mathematical Programming,2005,103(1):127-152. [17]ZHANG L,CHEN Z,ZHENG M,et al.Robust non-negativematrix factorization[J].Frontiers of Electrical and Electronic Engineering,2011,6(2):192-200. [18]DU L,LI X,SHEN Y.Robust nonnegative matrix factorization via half-quadratic minimization[C]//Proceedings of the 12th International Conference on Data Mining.2012:201-210. [19]GUAN N,LIU T,ZHANG Y,et al.Truncated Cauchy non-negative matrix factorization[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2019,41(1):246-259. [20]NAGY F.Parameter estimation of the Cauchy distribution in information theory approach[J].Journal of Universal Computer Science,2006,12(9):1332-1344. [21]NIKOLOVA M,NG M.Analysis of half-quadratic minimization methods for signal and image recovery[J].SIAM Journal onScientific Computing,2006,27(3):937-966. [22]NIKOLOVA M,CHAN R.The equivalence of half-quadraticminimization and the gradient linearization iteration[J].IEEE Transactions on Image Processing,2007,16(6):1623-1627. [23]NIE F,DING C,LUO D,et al.Improved minmax cut graph clustering with nonnegative relaxation[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases.2010:451-466. [24]NIE F,XU D,TSANG I,et al.Spectral embedded clustering[C]//Proceedings of International Joint Conferences on Artificial Intelligence.2009:1181-1186. |
[1] | LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao. Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients [J]. Computer Science, 2022, 49(9): 183-193. |
[2] | CHAI Hui-min, ZHANG Yong, FANG Min. Aerial Target Grouping Method Based on Feature Similarity Clustering [J]. Computer Science, 2022, 49(9): 70-75. |
[3] | YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng. SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion [J]. Computer Science, 2022, 49(6A): 256-260. |
[4] | MAO Sen-lin, XIA Zhen, GENG Xin-yu, CHEN Jian-hui, JIANG Hong-xia. FCM Algorithm Based on Density Sensitive Distance and Fuzzy Partition [J]. Computer Science, 2022, 49(6A): 285-290. |
[5] | CHEN Jing-nian. Acceleration of SVM for Multi-class Classification [J]. Computer Science, 2022, 49(6A): 297-300. |
[6] | Ran WANG, Jiang-tian NIE, Yang ZHANG, Kun ZHU. Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids [J]. Computer Science, 2022, 49(6): 44-54. |
[7] | CHEN Jia-zhou, ZHAO Yi-bo, XU Yang-hui, MA Ji, JIN Ling-feng, QIN Xu-jia. Small Object Detection in 3D Urban Scenes [J]. Computer Science, 2022, 49(6): 238-244. |
[8] | XING Yun-bing, LONG Guang-yu, HU Chun-yu, HU Li-sha. Human Activity Recognition Method Based on Class Increment SVM [J]. Computer Science, 2022, 49(5): 78-83. |
[9] | ZHU Zhe-qing, GENG Hai-jun, QIAN Yu-hua. Line-Segment Clustering Algorithm for Chemical Structure [J]. Computer Science, 2022, 49(5): 113-119. |
[10] | ZHANG Yu-jiao, HUANG Rui, ZHANG Fu-quan, SUI Dong, ZHANG Hu. Study on Affinity Propagation Clustering Algorithm Based on Bacterial Flora Optimization [J]. Computer Science, 2022, 49(5): 165-169. |
[11] | ZUO Yuan-lin, GONG Yue-jiao, CHEN Wei-neng. Budget-aware Influence Maximization in Social Networks [J]. Computer Science, 2022, 49(4): 100-109. |
[12] | YANG Xu-hua, WANG Lei, YE Lei, ZHANG Duan, ZHOU Yan-bo, LONG Hai-xia. Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding [J]. Computer Science, 2022, 49(3): 121-128. |
[13] | HAN Jie, CHEN Jun-fen, LI Yan, ZHAN Ze-cong. Self-supervised Deep Clustering Algorithm Based on Self-attention [J]. Computer Science, 2022, 49(3): 134-143. |
[14] | PU Shi, ZHAO Wei-dong. Community Detection Algorithm for Dynamic Academic Network [J]. Computer Science, 2022, 49(1): 89-94. |
[15] | ZHANG Ya-di, SUN Yue, LIU Feng, ZHU Er-zhou. Study on Density Parameter and Center-Replacement Combined K-means and New Clustering Validity Index [J]. Computer Science, 2022, 49(1): 121-132. |
|