Computer Science ›› 2022, Vol. 49 ›› Issue (3): 170-178.doi: 10.11896/jsjkx.210100132
• Computer Graphics & Multimedia • Previous Articles Next Articles
YANG Xiao-yu1, YIN Kang-ning1, HOU Shao-qi2, DU Wen-yi1, YIN Guang-qiang1
CLC Number:
[1]LI W,ZHAO R,XIAO T,et al.Deepreid:Deep filter pairingneural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,OH:IEEE,2014:152-159. [2]CHENG D,GONG Y,ZHOU S,et al.Person Reidentification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV:IEEE,2016:1335-1344. [3]KARAMAN S,LISANTI G,BAGDANOV A.Leveraging local neighborhood topology for large scale person re-identification[C]//Pattern Recognition.Columbus,OH:IEEE,2014:3767-3778. [4]LIN J,REN L,LU J,et al.Consistent-Aware Deep Learning for Person Re-identification in a Camera Network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI:IEEE,2017:3396-3405. [5]OU X,MA Q,WANG Y.Improving person re-identification by multi-task learning[J].Multimedia Tools & Applications,2019,347:109-118. [6]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional blockattention module[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:3-19. [7]KIPF T,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//ICLR.2017. [8]CARUANA R.Multitask learning[J].Machine Learning,1997,28(1):41-75. [9]MISRA I,SHRIVASTAVA A,GUPTA A,et al.Cross-stitchnetworks for multi-task learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:3994-4003. [10]LIU S,JOHNS E,DAVISON A J.End-to-end multi-task lear-ning with attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:1871-1880. [11]GAO Y,MA J,ZHAO M,et al.Nddr-cnn:Layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction[C]//Proceedings of the IEEE Conference on Compu-ter Vision and Pattern Recognition.2019:3205-3214. [12]KOKKINOS I.Ubernet:Training a universal convolutional neural network for low-,mid-,and high-level vision using diverse datasets and limited memory[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:6129-6138. [13]LONG M,CAO Z,WANG J,et al.Learning multiple tasks with multilinear relationship networks[C]//Advances in Neural Information Processing Systems.2017:1594-1603. [14]BRAGMAN F J S,TANNO R,OURSELIN S,et al.Stochastic filter groups for multi-task cnns:Learning specialist and gene-ralist convolution kernels[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1385-1394. [15]LU Y,KUMAR A,ZHAI S,et al.Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:5334-5343. [16]ZAMIR A R,SAX A,SHEN W,et al.Taskonomy:Disentangling task transfer learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3712-3722. [17]HOSPEDALES T,LAYNE R,GONG S.Re-id:Hunting attri-butes in the wild[C]//British Machine Vision Conference.2014. [18]LAYNE R,HOSPEDALES T M,GONG S,et al.Person re-identification by attributes[C]//Bmvc.2012:8. [19]SU C,YANG F,ZHANG S,et al.Multi-task learning with low rank attribute embedding for person re-identification[C]//Proceedings of the IEEE Intenational Conference on Computer Vision.2015:3739-3747. [20]LI H,TANG M,LIN J W,et al.Cross-modality Person Re-identification Framework Based on Im-proved Hard Triplet Loss[J].Computer Science,2020,47(10):180-186. [21]KHAMIS S,KUO C H,SINGH V K,et al.Joint learning for attribute-consistent person re-identification[C]//European Conference on Computer Vision.Springer,Cham,2014:134-146. [22]FRANCO A,OLIVEIRA L.Convolutional covariance features:Conception,integration and performance in person reidentification[J].Pattern Recognition,2017,61:593-609. [23]SCHUMANN A,STIEFELHAGEN R.Person re-identification by deep learning attribute-complementary information[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Honolulu,HI:IEEE,2017:1435-1443. [24]WANG J,ZHU X,GONG S,et al.Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT:IEEE,2018:2275-2284. [25]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016:770-778. [26]WANG D,ZHOU D K,HUANG Y D,et al.Multi-scale Multi-granularity Feature for Pedestrian Re-identification[J].Compu-ter Science,2021,48(7):238-244. [27]LIN M,CHEN Q,YAN S.Network In Network[J].Computer Science,2013. [28]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015. [29]GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifierneural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.2011:315-323. [30]LI Q,HAN Z,WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [31]ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:A benchmark[C]//Proceedings of the IEEE Internatio-nal Conference on Computer Vision.2015:1116-1124. [32]RISTANI E,SOLERA F,ZOU R,et al.Performance measures and a data set for multi-target,multi-camera tracking[C]//European Conference on Computer Vision.Springer,Cham,2016:17-35. [33]ZHENG Z,ZHENG L,YANG Y.Unlabeled samples generatedby gan improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:3754-3762. [34]SUN Y,ZHENG L,DENG W,et al.Svdnet for pedestrian retrieval[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:3800-3808. [35]ZHENG Z,ZHENG L,YANG Y.Pedestrian alignment network for large-scale person re-identification[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,29(10):3037-3045. [36]SI J,ZHANG H,LI C G,et al.Dual attention matching network for context-aware feature sequence based person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5363-5372. [37]SUN Y,ZHENG L,YANG Y,et al.Beyond partmodels:Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:480-496. [38]SUN Y,XU Q,LI Y,et al.Perceive where to focus:Learningvisibility-aware part-level features for partial person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:393-402. [39]KALAYEH M M,BASARAN E,GÖKMEN M,et al.Humansemantic parsing for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1062-1071. [40]HOU R,MA B,CHANG H,et al.Interaction-and-aggregation network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:9317-9326. [41]TAY C P,ROY S,YAP K H.Aanet:Attribute attention network for person re-identifications[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:7134-7143. [42]DAI Z,CHEN M,GU X,et al.Batch DropBlock network forperson re-identification and beyond[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2019:3691-3701. |
[1] | CHEN Kun-feng, PAN Zhi-song, WANG Jia-bao, SHI Lei, ZHANG Jin. Moderate Clothes-Changing Person Re-identification Based on Bionics of Binocular Summation [J]. Computer Science, 2022, 49(8): 165-171. |
[2] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[3] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[4] | MENG Yue-bo, MU Si-rong, LIU Guang-hui, XU Sheng-jun, HAN Jiu-qiang. Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism [J]. Computer Science, 2022, 49(7): 142-147. |
[5] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[6] | CHEN Yong-ping, ZHU Jian-qing, XIE Yi, WU Han-xiao, ZENG Huan-qiang. Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss [J]. Computer Science, 2022, 49(6A): 424-428. |
[7] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[8] | YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng. SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion [J]. Computer Science, 2022, 49(6A): 256-260. |
[9] | YANG Yue, FENG Tao, LIANG Hong, YANG Yang. Image Arbitrary Style Transfer via Criss-cross Attention [J]. Computer Science, 2022, 49(6A): 345-352. |
[10] | LAN Ling-xiang, CHI Ming-min. Remote Sensing Change Detection Based on Feature Fusion and Attention Network [J]. Computer Science, 2022, 49(6): 193-198. |
[11] | LI Fa-guang, YILIHAMU·Yaermaimaiti. Real-time Detection Model of Insulator Defect Based on Improved CenterNet [J]. Computer Science, 2022, 49(5): 84-91. |
[12] | DONG Qi-da, WANG Zhe, WU Song-yang. Feature Fusion Framework Combining Attention Mechanism and Geometric Information [J]. Computer Science, 2022, 49(5): 129-134. |
[13] | LI Peng-zu, LI Yao, Ibegbu Nnamdi JULIAN, SUN Chao, GUO Hao, CHEN Jun-jie. Construction and Classification of Brain Function Hypernetwork Based on Overlapping Group Lasso with Multi-feature Fusion [J]. Computer Science, 2022, 49(5): 206-211. |
[14] | FAN Xin-nan, ZHAO Zhong-xin, YAN Wei, YAN Xi-jun, SHI Peng-fei. Multi-scale Feature Fusion Image Dehazing Algorithm Combined with Attention Mechanism [J]. Computer Science, 2022, 49(5): 50-57. |
[15] | GAO Xin-yue, TIAN Han-min. Droplet Segmentation Method Based on Improved U-Net Network [J]. Computer Science, 2022, 49(4): 227-232. |
|