Computer Science ›› 2022, Vol. 49 ›› Issue (7): 120-126.doi: 10.11896/jsjkx.210500157
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHENG Cheng, JIANG Ai-lian
CLC Number:
[1]CHEN Q S,TAO Y,SHEN F H,et al.Semantic segmentation of images based on contextual structure[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2020,32(2):287-294. [2]CHAO Y,XIAO N F.Research on Robotic Grasping Methods Based on Semantic Segmentation and Brain Computer Interface[J].Journal of Chongqing University of Technology(Natural Science),2020,34(3):128 -136,151. [3]LECUN Y,BOTTOU L.Gradient-based learning applied to docu-ment recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [4]LONG J,SHEKHAMER E,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651. [5]RONNEBERGER O,FISCHER P,BROX T,et al.U-net:Con-volutional networks for biomedical image segmentation[J].Medical Image Computing and Computer Assisted Intervention,2015,28(4):234-241. [6]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:2881-2890. [7]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:Semantic Image Segmentation with Deep Convolutional Nets,Atrous Convolution,and Fully Connected CRFs[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,40(4):834-848. [8]PASZKE A,CHAURASIA A,KIM A.ENet:a deep neural network architecture for real-time semantic segmentation[J].ar-Xiv:1606.02147,2016. [9]YU C,WANG J,PENG C,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision.Munich,Germany,2018:325-341. [10]LI H,XIONG P,FAN H,et al.Dfanet:Deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Seoul:IEEE Press,2019:9522-9531. [11]HAN K,WANG Y,TIAN Q,et al.GhostNet:More Features From Cheap Operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE Press,2020:1577-1586. [12]LIN G S,MILAN A,SHEN C H,et al.Refinenet:multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:5168-5177. [13]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,2016:2818-2826. [14]CHOLLET F.Xception:deep learning with depth wise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:1800-1807. [15]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:inverted residuals and linear bottlenecks.conference [C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520. [16]ZHUANG L,LI J,SHEN Z,et al.Learning Efficient Convolutional Networks through Network Slimming [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:2755-2763. [17]ZHAO H,QI X,SHEN X,et al.Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision(ECCV).Munich,Germany,2018:405-420. [18]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient CNN architecture design[C]//Procee-dings of the European Conference on Computer Vision.Munich,Germany,2018:116-131. [19]WANG Y,ZHOU Q,LIU J,et al.LEDNet:A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation[C]//2019 IEEE International Conference on Image Processing(ICIP).Taipei:IEEE Press,2019:126-172. [20]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[5] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[6] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[7] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[8] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[9] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[10] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[11] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[12] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[13] | YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng. SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion [J]. Computer Science, 2022, 49(6A): 256-260. |
[14] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
[15] | CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344. |
|