Computer Science ›› 2022, Vol. 49 ›› Issue (5): 10-24.doi: 10.11896/jsjkx.210200038

• Computer Graphics & Multimedia • Previous Articles     Next Articles

Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network

HU Fu-yuan1,2, WAN Xin-jun1,3, SHEN Ming-fei1, XU Jiang-lang1,3, YAO Rui4, TAO Zhong-ben1,2   

  1. 1 School of Electronic & Information Engineering,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China
    2 Virtual Reality Key Laboratory of Intelligent Interaction and Application Technology of Suzhou,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China
    3 Suzhou Key Laboratory for Big Data and Information Service,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China
    4 School of Computer Science and Technology,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China
  • Received:2021-02-03 Revised:2021-07-09 Online:2022-05-15 Published:2022-05-06
  • About author:HU Fu-yuan,born in 1978,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include machine learning and computer vision.
    WAN Xin-jun,born in 1996,postgra-duate,is a member of China Computer Federation.His main research interests include deep learning and computer vision.
  • Supported by:
    National Natural Science Foundation of China(61876121,61801323),Primary Research & Development Plan of Jiangsu Province(BE2017663) and Foundation of Natural Science Research Program in Jiangsu Province Higher Education(19KJB520054,19KJB110021,20KJB520018).

Abstract: Image instance segmentation is an important part of image processing and computer vision technology about image understanding.With the development of deep learning and deep convolutional neural network,image instance segmentation method based on deep convolutional neural network has made great progress.Instance segmentation task is actually the combination of target detection and semantic segmentation,which can complete the task of recognizing the target contour in the image at thepixel level.Instance segmentation can not only locate the position of the object in the image,segment all the objects from the pixel level,but also mark different individuals of the same category in the image,which is not only the pixel level segmentation of the image,but also the instance level understanding.Firstly,the reason of image segmentation and the function of deep convolution neural network are described.Then,according to the process and characteristics of image instance segmentation methods,the research progress of image instance segmentation is introduced from two-stage and single-stage perspectives,and the advantages and disadvantages of the two methods are described in detail.Then,the design ideas of region,feature extraction and mask are summarized.In addition,the performance evaluation criteria and common public data sets of image instance segmentation methods are summarized,and on this basis,the segmentation accuracy of mainstream image instance segmentation models is compared and evaluated.Finally,it points out the problems and solutions of the current image instance segmentation,summarizes the development of image instance segmentation and prospects for the future.

Key words: Deep convolutional neural network, Instance segmentation, Object detection, Semantic segmentation, Single stage, Two stage

CLC Number: 

  • TP391.4
[1]HARIHARAN B,ARBELÁEZ P,GIRSHICK R,et al.Simultaneous detection and segmentation[C]//Proceedings of the European Conference on Computer Vision.Heidelberg:Springer,2014:297-312.
[2]FAN W,LIU T,HUANG R,et al.Low-level CNN Feature Aided Image Instance Segmentation[J].Computer Science,2020,47(11):186-191.
[3]TANG Q K,HU Y.Single stage target detection algorithmbased on positive and negative anchor frame equalization and feature alignment[J].Chinese Journal of Computer Aided Design and Graphics,2020,32(11):1773-1783.
[4]ZHOU P C,GONG S R,ZHONG S,et al.Image Semantic Segmentation Based on Deep Feature Fusion[J].Computer Science,2020,47(2):126-134.
[5]MOU L,ZHU X X.Vehicle instance segmentation from aerialimage and video using a multitask learning residual fully convolutional network[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(11):6699-6711.
[6]XU Z,LIU S,SHI J,et al.Outdoor RGBD instance segmentation with residual regretting learning[J].IEEE Transactions on Image Processing,2020,29:5301-5309.
[7]MANINIS K K,CAELLES S,CHEN Y,et al.Video object segmentation without temporal information[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(6):1515-1530.
[8]XU Y,LI Y,WANG Y,et al.Gland instance segmentation using deep multichannel neural networks[J].IEEE Transactions on Biomedical Engineering,2017,64(12):2901-2912.
[9]GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2015:1440-1448.
[10]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2016:779-788.
[11]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotmultibox detector[C]//Proceedings of the European Conference on Computer Vision.Heidelberg:Springer,2016:21-37.
[12]RONNEBERGER O,FISCHER P,BROX T.U-net:convolu-tional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer,2015:234-241.
[13]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(12):2481-2495.
[14]ZHANG Z,SCHWING A G,FIDLER S,et al.Monocular object instance segmentation and depth ordering with cnns[C]//Proceedings of the 2015 IEEE International Conference on Compu-ter Vision.Los Alamitos:IEEE Computer Society Press,2015:2614-2622.
[15]ROMERAPAREDES B,TORR P H S.Recurrent instance segmentation[C]//Proceedings of the 2016 European Conference on Computer Vision.Heidelberg:Springer,2016:312-329.
[16]REN M,ZEMEL R S.End-to-end instance segmentation withrecurrent attention[C]//Proceedings of the 2017 IEEE Confe-rence on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:293-301.
[17]UHRIG J,CORDTS M,FRANKE U,et al.Pixel-level encoding and depth layering for instance-level semantic labeling[C]//Proceedings of the German Conference on Pattern Recognition.Switzerland:Springer,2016:14-25.
[18]ZHANG S,GONG Y H,WANG J J.Development of deep convo-lutional neural network and its application in computer vision[J].Chinese Journal of Computers,2019,42(3):453-482.
[19]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[20]SCHMIDHUBER J.Deep learning in neural networks:An overview[J].Neural Networks,2015,61:85-117.
[21]GOODFELLOW I,BENGIO Y,COURVILLE A,et al.Deeplearning[M].Cambridge:MIT press,2016.
[22]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems.Cambridge:MIT Press,2012:1097-1105.
[23]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2016:770-778.
[24]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:4700-4708.
[25]DAI J,HE K,LI Y,et al.Instance-sensitive fully convolutional networks[C]//Proceedings of the European Conference on Computer Vision.Heidelberg:Springer,2016:534-549.
[26]LI Y,QI H,DAI J,et al.Fully convolutional instance-aware semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:2359-2367.
[27]HE K M,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2017:2980-2988.
[28]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2018:8759-8768.
[29]HUANG Z,HUANG L,GONG Y,et al.Mask scoring r-cnn[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2019:6409-6418.
[30]PINHEIRO P O,COLLOBERT R,DOLLÁR P.Learning tosegment object candidates[J].Advances in Neural Information Processing Systems,2015,28:1990-1998.
[31]PINHEIRO P O,LIN T Y,COLLOBERT R,et al.Learning to refine object segments[C]//European Conference on Computer Vision.Heidelberg:Springer,2016:75-91.
[32]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2015:3431-3440.
[33]VAN DE SANDE K E A,UIJLINGS J R R,GEVERS T,et al.Segmentation as selective search for object recognition[C]//Proceedings of the 2011 International Conference on Computer Vision.Spain:IEEE,2011:1879-1886.
[34]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:to-wards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[35]CHEN K,PANG J,WANG J,et al.Hybrid task cascade for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2019:4974-4983.
[36]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:936-944.
[37]CHEN L C,HERMANS A,PAPANDREOU G,et al.Masklab:Instance segmentation by refining object detection with semantic and direction features[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2018:4013-4022.
[38]DAI J,HE K,SUN J.Instance-aware semantic segmentation via multi-task network cascades[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alami-tos:IEEE Computer Society Press,2016:3150-3158.
[39]WEN Y,HU F,REN J,et al.Joint multi-task cascade for instance segmentation[J].Journal of Real-Time Image Proces-sing,2020,17(6):1983-1989.
[40]HAYDER Z,HE X,SALZMANN M.Boundary-aware instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:5696-5704.
[41]XU W,WANG H,QI F,et al.Explicit shape encoding for real-time instance segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2019:5168-5177.
[42]CHENG T,WANG X,HUANG L,et al.Boundary-preservingmask R-CNN[C]//Proceedings of the European Conference on Computer Vision.Heidelberg:Springer,2020:660-676.
[43]PENG S,JIANG W,PI H,et al.Deep snake for real-Time instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Alami-tos:IEEE Computer Society Press,2020:8533-8542.
[44]KASS M,WITKIN A,TERZOPOULOS D.Snakes:Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
[45]KIRILLOV A,LEVINKOV E,ANDRES B,et al.InstanceCut:from edges to instances with multicut[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:5008-5017.
[46]LIU S,JIA J,FIDLER S,et al.Sgn:Sequential grouping networks for instance segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2017:3496-3504.
[47]DE BRABANDERE B,NEVEN D,VAN GOOL L.Semantic instance segmentation with a discriminative loss function[EB/OL].[2020-09-10].https://arxiv.org/abs/1708.02551.
[48]FATHI A,WOJNA Z,RATHOD V,et al.Semantic instancesegmentation via deep metric learning[EB/OL].[2020-09-10].https://arxiv.org/abs/1703.10277.
[49]KONG S,FOWLKES C C.Recurrent pixel embedding for instance grouping[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2018:9018-9028.
[50]BAI M,URTASUN R.Deep watershed transform for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:5221-5229.
[51]GAO N,SHAN Y,WANG Y,et al.Ssap:Single-shot instance segmentation with affinity pyramid[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2019:642-651.
[52]BOLYA D,ZHOU C,XIAO F,et al.Yolact:Real-time instance segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2019:9157-9166.
[53]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2017:2980-2988.
[54]BOLYA D,ZHOU C,XIAO F,et al.Yolact++:Better real-time instance segmentation[EB/OL].[2020-09-10].https://arxiv.org/abs/1912.06218.
[55]LIU H,SOTO R A R,XIAO F,et al.YolactEdge:Real-time Instance Segmentation on the Edge(Jetson AGX Xavier:30 FPS,RTX 2080 Ti:170 FPS)[EB/OL].[2020-09-10].https://ar-xiv.org/abs/2012.12259.
[56]DUAN K W,BAI S,XIE L X,et al.CenterNet:object detection with keypoint triplets[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2019:6569-6578.
[57]TIAN Z,SHEN C,CHEN H,et al.Fcos:Fully convolutionalone-stage object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2019:9627-9636.
[58]XIE E,SUN P,SONG X,et al.Polarmask:Single shot instance segmentation with polar representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2020:12193-12202.
[59]ZHANG R,TIAN Z,SHEN C,et al.Mask encoding for single shot instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2020:10226-10235.
[60]KIRILLOV A,WU Y,HE K,et al.Pointrend:Image segmentation as rendering[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2020:9799-9808.
[61]CHEN H,SUN K,TIAN Z,et al.BlendMask:Top-down meets bottom-up for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2020:8573-8581.
[62]YING H,HUANG Z,LIU S,et al.Embedmask:Embeddingcoupling for one-stage instance segmentation[EB/OL].[2020-09-10].https://arxiv.org/abs/1912.01954.
[63]WANG Y,XU Z,SHEN H,et al.CenterMask:single shot instance segmentation with point representation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Reco-gnition.Los Alamitos:IEEE Computer Society Press,2020:9313-9321.
[64]TIAN Z,SHEN C,CHEN H.Conditional Convolutions for Instance Segmentation[EB/OL].[2020-09-10].https://arxiv.org/abs/2003.05664.
[65]WANG X,KONG T,SHEN C,et al.Solo:Segmenting objects by locations[C]//Proceedings of the European Conference on Computer Vision.Heidelberg:Springer,2020:649-665.
[66]WANG X,ZHANG R,KONG T,et al.SOLOv2:Dynamic and fast instance segmentation[J].Advances in Neural Information Processing Systems,2020,33:17721-17732.
[67]LAW H,DENG J.CornerNet:Detecting Objects as Paired Keypoints[J].International Journal of Computer Vision,2020,128(3):642-656.
[68]ZHOU X,ZHUO J,KRAHENBUHL P.Bottom-up object detection by grouping extreme and center points[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2019:850-859.
[69]ZHU C,HE Y,SAVVIDES M.Feature selective anchor-freemodule for single-shot object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2019:840-849.
[70]KONG T,SUN F,LIU H,et al.Foveabox:beyound anchor-based object detection[J].IEEE Transactions on Image Processing,2020,29:7389-7398.
[71]LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[72]DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE,2005:886-893.
[73]DAI J,QI H,XIONG Y,et al.Deformable convolutional net-works[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2017:764-773.
[74]WANG Z Y,YUAN C,LI J C.Instance segmentation using sepa-rable convolution and multilevel features[J].Journal of Software,2019,30(4):954-961.
[75]CHEN C,QI F.Review on Development of Convolutional Neural Network and Its Application in Computer Vision[J].Computer Science,2019,46(3):63-73.
[76]CHEN X,GIRSHICK R,HE K,et al.Tensormask:A founda-tion for dense object segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:2061-2069.
[77]LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//Proceedings of European Conference on Computer Vision.Heidelberg:Springer,2014:740-755.
[78]CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2016:3213-3223.
[79]EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The PASCAL visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338.
[80]HARIHARAN B,ARBELÁEZ P,BOURDEV L,et al.Semantic contours from inverse detectors[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2011:991-998.
[81]NEUHOLD G,OLLMANN T,ROTA BULO S,et al.The mapil-lary vistas dataset for semantic understanding of street scenes[C]//Proceedings of the IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2017:4990-4999.
[82]ZHOU B,ZHAO H,FERNANDEZ F X P,et al.Scene parsing through ade20k dataset[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:633-641.
[83]KUZNETSOVA A,ROM H,ALLDRIN N,et al.The open images dataset v4:Unified image classification,object detection,and visual relationship detection at scale[EB/OL].[2020-09-10].https://arxiv.org/abs/1811.00982.
[84]QI L,JIANG L,LIU S,et al.Amodal instance segmentationwith kins dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2019:3014-3023.
[85]GUPTA A,DOLLAR P,GIRSHICK R.Lvis:A dataset forlarge vocabulary instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2019:5356-5364.
[86]SINGH B,DAVIS L S.An analysis of scale invariance in object detection snip[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2018:3578-3587.
[87]SINGH B,NAJIBI M,DAVIS L S.SNIPER:efficient multi-scale training[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:9333-9343.
[1] LIU Dong-mei, XU Yang, WU Ze-bin, LIU Qian, SONG Bin, WEI Zhi-hui. Incremental Object Detection Method Based on Border Distance Measurement [J]. Computer Science, 2022, 49(8): 136-142.
[2] WANG Can, LIU Yong-jian, XIE Qing, MA Yan-chun. Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization [J]. Computer Science, 2022, 49(8): 157-164.
[3] CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126.
[4] CHEN Yong-ping, ZHU Jian-qing, XIE Yi, WU Han-xiao, ZENG Huan-qiang. Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss [J]. Computer Science, 2022, 49(6A): 424-428.
[5] SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440.
[6] CHEN Jia-zhou, ZHAO Yi-bo, XU Yang-hui, MA Ji, JIN Ling-feng, QIN Xu-jia. Small Object Detection in 3D Urban Scenes [J]. Computer Science, 2022, 49(6): 238-244.
[7] XU Tao, CHEN Yi-ren, LYU Zong-lei. Study on Reflective Vest Detection for Apron Workers Based on Improved YOLOv3 Algorithm [J]. Computer Science, 2022, 49(4): 239-246.
[8] YUAN Lei, LIU Zi-yan, ZHU Ming-cheng, MA Shan-shan, CHEN Lin-zhou-ting. Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss [J]. Computer Science, 2021, 48(9): 168-173.
[9] GONG Hao-tian, ZHANG Meng. Lightweight Anchor-free Object Detection Algorithm Based on Keypoint Detection [J]. Computer Science, 2021, 48(8): 106-110.
[10] WANG Shi-yun, YANG Fan. Remote Sensing Image Semantic Segmentation Method Based on U-Net Feature Fusion Optimization Strategy [J]. Computer Science, 2021, 48(8): 162-168.
[11] LI Lin, LIU Xue-liang, ZHAO Ye, JI Ping. Low Light Image Fusion Detection Method Based on Lego Filter and SSD [J]. Computer Science, 2021, 48(7): 213-218.
[12] XIN Yuan-xue, SHI Peng-fei, XUE Rui-yang. Moving Object Detection Based on Region Extraction and Improved LBP Features [J]. Computer Science, 2021, 48(7): 233-237.
[13] CHENG Song-sheng, PAN Jin-shan. Video Super-resolution Method Based on Deep Learning Feature Warping [J]. Computer Science, 2021, 48(7): 184-189.
[14] ZHANG Man, LI Jie, ZHU Xin-zhong, SHEN Ji, CHENG Hao-tian. Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm [J]. Computer Science, 2021, 48(6A): 80-84.
[15] YU Han-qing, YANG Zhen, YIN Zhi-jian. Tiny YOLOv3 Target Detection Algorithm Based on Region Activation Strategy [J]. Computer Science, 2021, 48(6A): 118-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!