Computer Science ›› 2022, Vol. 49 ›› Issue (5): 355-362.doi: 10.11896/jsjkx.210500226
• Interdiscipline & Frontier • Previous Articles Next Articles
GAO Jie1, LIU Sha2, HUANG Ze-qiang2, ZHENG Tian-yu3, LIU Xin2, QI Feng-bin2
CLC Number:
[1]HUANG G,LIU Z,LAURENS V,et al.Densely ConnectedConvolutional Networks[C]//IEEE Computer Society.2016. [2]BROWN T B,MANN B,RYDER N,et al.Language Models are Few-Shot Learners[C]//Conference and Workshop on Neural Information Processing Systems.2020. [3]NAUMOV M,MUDIGERE D,SHI H,et al.Deep LearningRecommendation Model for Personalization and Recommen-dation Systems[J].arXiv:1906.00091,2019. [4]KOSSMANN J,SCHLOSSER R.Self-Driving Database Sys-tems:A Conceptual Approach[J].Distributed and Parallel Databases,2020,38:1-2. [5]YE D,CHEN G,ZHANG W,et al.Towards Playing Full MOBA Games with Deep Reinforcement Learning[C]//Conference and Workshop on Neural Information Processing Systems.2020. [6]HEO L,FEIG M.High-Accuracy Protein Structures By Combining Machine-Learning With Physics-Based Refinement[J].Proteins-Structure Function and Bioinformatics,2020,5:637-642. [7]CHETLUR S,WOOLLEY C,VANDERMERSCH P,et al.cu-DNN:Efficient Primitives for Deep Lear-ning[C]//Deep Learning and Representation Learning Workshop (NIPS2014).2014. [8]JIA Y,SHELHAMER E,DONAHUE J,et al.Caffe:Convolutional Architecture for Fast Feature Embedding[C]//Procee-dings of the 22nd ACM International Conference(MM’14).2014. [9]ABADI M,AGARWAL A,BARHAM P,et al.Tensor Flow:Large-Scale Machine Learning on Heterogeneous Distributed Systems[J].arXiv:1603.04467,2015. [10]PASZKE A,GROSS S,MASSA F,et al.PyTorch:An Impera-tive Style,High-Performance Deep Learning Library[J].arXiv:1912.01703,2019. [11]LAVIN A.maxDNN:An Efficient Convolution Kernel for Deep Learning with Maxwell GPUs[J].arXiv:1501.06633,2015. [12]STEFAN H,FIRAS A,CE Z,et al.Caffe con troll:Shallowideas to speed up deep learning[C]//Proceedings of the Fourth Workshop on Data Analytics in the Cloud.2015. [13]VASILACHE N,JOHNSON J,MATHIEU M,et al.Fast Con-volutional Nets With fbfft:A GPU Performance Evaluation[C]//International Conference on Learning Representations.2015. [14]FU H H,LIAO J,YANG J,et al.The Sunway Taihu Lightsupercomputer:system and applications[J].Science China(Information Sciences),2016,7(59):113-128. [15]FANG J,FU H,ZHAO W,et al.swDNN:A Library for Acce-lerating Deep Learning Applications on Sunway TaihuLight[C]//2017 IEEE International Parallel and Distributed Proces-sing Symposium (IPDPS).IEEE,2017. [16]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017,30:6000-6010. [17]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[EB/OL].[2018-06-11].https://openai.com/blog/language-unsupervised/. [18]DEVLIN J,CHANG M,LEE K,et al.BERT:Pre-training ofDeep Bidirectional Transformers for Language Understanding[C]//North American Chapter of the Association for Computational Linguistics.2018. [19]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners[EB/OL].[2019-02-14].https://openai.com/blog/better-language-models/. [20]MOHAMMAD S,MOSTOFA P,RAUL P,et al.Megatron-LM:Training Multi-Billion Parameter Language Models Using GPU Model Parallelism[J].arXiv:1909.08053,2019. [21]RAJBHANDARI S,RASLEY J,RUWASE O,et al.ZeRO:Memory Optimization Towards Training A Trillion Parameter Models[J].arXiv:1910.02054v2,2020. [22]BROWN T B,MANN B,RYDER N,et al.Language Models are Few-Shot Learners[J].arXiv:2005.14165,2020. [23]FEDUS W,ZOPH B,SHAZEER N,et al.Switch Transformers:Scaling to Trillion Parameter Models with Simple and Efficient Sparsity[J].arXiv:2101.03961,2021. |
[1] | TIAN Zhen-zhen, JIANG Wei, ZHENG Bing-xu, MENG Li-min. Load Balancing Optimization Scheduling Algorithm Based on Server Cluster [J]. Computer Science, 2022, 49(6A): 639-644. |
[2] | WEI Hui, CHEN Ze-mao, ZHANG Li-qiang. Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns [J]. Computer Science, 2022, 49(6): 350-355. |
[3] | JIAO Xiang, WEI Xiang-lin, XUE Yu, WANG Chao, DUAN Qiang. Automatic Modulation Recognition Based on Deep Learning [J]. Computer Science, 2022, 49(5): 266-278. |
[4] | TAN Shuang-jie, LIN Bao-jun, LIU Ying-chun, ZHAO Shuai. Load Scheduling Algorithm for Distributed On-board RTs System Based on Machine Learning [J]. Computer Science, 2022, 49(2): 336-341. |
[5] | FAN Hong-jie, LI Xue-dong, YE Song-tao. Aided Disease Diagnosis Method for EMR Semantic Analysis [J]. Computer Science, 2022, 49(1): 153-158. |
[6] | XIA Zhong, XIANG Min, HUANG Chun-mei. Hierarchical Management Mechanism of P2P Video Surveillance Network Based on CHBL [J]. Computer Science, 2021, 48(9): 278-285. |
[7] | SONG Hai-ning, JIAO Jian, LIU Yong. Research on Mobile Edge Computing in Expressway [J]. Computer Science, 2021, 48(6A): 383-386. |
[8] | WANG Zheng, JIANG Chun-mao. Cloud Task Scheduling Algorithm Based on Three-way Decisions [J]. Computer Science, 2021, 48(6A): 420-426. |
[9] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
[10] | ZHENG Zeng-qian, WANG Kun, ZHAO Tao, JIANG Wei, MENG Li-min. Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster [J]. Computer Science, 2021, 48(6): 261-267. |
[11] | LIU Dong, WANG Ye-fei, LIN Jian-ping, MA Hai-chuan, YANG Run-yu. Advances in End-to-End Optimized Image Compression Technologies [J]. Computer Science, 2021, 48(3): 1-8. |
[12] | YAO Ze-wei, LIU Jia-wen, HU Jun-qin, CHEN Xing. PSO-GA Based Approach to Multi-edge Load Balancing [J]. Computer Science, 2021, 48(11A): 456-463. |
[13] | PAN Yu, ZOU Jun-hua, WANG Shuai-hui, HU Gu-yu, PAN Zhi-song. Deep Community Detection Algorithm Based on Network Representation Learning [J]. Computer Science, 2021, 48(11A): 198-203. |
[14] | MA Lin, WANG Yun-xiao, ZHAO Li-na, HAN Xing-wang, NI Jin-chao, ZHANG Jie. Network Intrusion Detection System Based on Multi-model Ensemble [J]. Computer Science, 2021, 48(11A): 592-596. |
[15] | LIU Tian-xing, LI Wei, XU Zheng, ZHANG Li-hua, QI Xiao-ya, GAN Zhong-xue. Monte Carlo Tree Search for High-dimensional Continuous Control Space [J]. Computer Science, 2021, 48(10): 30-36. |
|