Computer Science ›› 2021, Vol. 48 ›› Issue (11A): 592-596.doi: 10.11896/jsjkx.201100170
• Information Security • Previous Articles Next Articles
MA Lin, WANG Yun-xiao, ZHAO Li-na, HAN Xing-wang, NI Jin-chao, ZHANG Jie
CLC Number:
[1]AL-EMADI S,AL-MOHANNADI A,AL-SENAID F.UsingDeep Learning Techniques for Network Intrusion Detection[C]//2020 IEEE International Conference on Informatics,IoT,and Enabling Technologies (ICIoT).2020:171-176. [2]MI X L,ZOU F,ZHU R Q.Bagging and deep learning in optimal individualized treatment rules[J].Biometrics,2019,75(2):674-684. [3]SHIN J,IM C H.Performance Improvement of Near-Infrared Spectroscopy-Based Brain-Computer Interface Using Regulari-zed Linear Discriminant Analysis Ensemble Classifier Based on Bootstrap Aggregating[OL].https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-85082676481&lang=zh-cn&site=eds-live. [4]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature.2015,521(7553):436-444. [5]SALAMA M A,EID H F,RAMADAN R A.Hybrid intelligent intrusion detection scheme [M]//Soft Computing in Industrial Applications.Springer,Berlin,Heidelberg,2011:293-303. [6]MUKKAMALA S,JANOSKI G.SUNGA H.Feature rankingand selection for intrusion detection using support vector machines[C]//Proceeding of the International Conference on Information and Knowledge Engineering.2002:503-509. [7]MUKKAMALA S.JANOSKI G.SUNG A H.Instrusion detection using neural networks and support vector machines[C]//Proceeding of IEEE International Joint Conference on Neural Networks.2002:1702-1702. [8]SHUM J,MALKI H A.Network intrusion detection systemusing neural networks[C]//Fourth International Conference on Natural Computation.2008:242-246. [9]ANYANWU L O,JARED K P D,AROME G A,et al.Scalableintrusion detection with recurrent neural networks[C]//Se-venth International Conference on Information Technology.2010:919-923. [10]FIORE U,PALMIERI F,CASTIGLIONE A,et al.Networkanomaly detection with the restricted Boltzmann machine[J].Neurocomputing,2013,122(12):13-23. [11]YIN C L,ZHU Y F,FEI J L.A deep learning approach for intrusion detection using recurrent neural networks[J].IEEE Access,2017,2017(5):21954-21961. [12]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [13]BAI S,KOLTER J Z,KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence mo-deling[J].arXiv:1803.01271,2018. [14]GOODFELLOW I,BENGIO J,KUWELL A.Deep Learning[M].People's Posts and Telecommunications Press,2017:220-222. [15]LI X B,LI S Y,LI X B,et al.AdBagging:Adaptive sampling Parameter online bagging algorithm[J].Computer Engineering and Design,2011,32(12):4095-4099. [16]WAIBEL A,HANAZAWA T,HINTON G,et al.Phoneme recognition using time-delay neural networks[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,37(3):328-339. |
[1] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[2] | ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao. SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm [J]. Computer Science, 2022, 49(6A): 562-570. |
[3] | CAO Yang-chen, ZHU Guo-sheng, SUN Wen-he, WU Shan-chao. Study on Key Technologies of Unknown Network Attack Identification [J]. Computer Science, 2022, 49(6A): 581-587. |
[4] | WEI Hui, CHEN Ze-mao, ZHANG Li-qiang. Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns [J]. Computer Science, 2022, 49(6): 350-355. |
[5] | GAO Jie, LIU Sha, HUANG Ze-qiang, ZHENG Tian-yu, LIU Xin, QI Feng-bin. Deep Neural Network Operator Acceleration Library Optimization Based on Domestic Many-core Processor [J]. Computer Science, 2022, 49(5): 355-362. |
[6] | JIAO Xiang, WEI Xiang-lin, XUE Yu, WANG Chao, DUAN Qiang. Automatic Modulation Recognition Based on Deep Learning [J]. Computer Science, 2022, 49(5): 266-278. |
[7] | FAN Hong-jie, LI Xue-dong, YE Song-tao. Aided Disease Diagnosis Method for EMR Semantic Analysis [J]. Computer Science, 2022, 49(1): 153-158. |
[8] | ZHANG Shi-peng, LI Yong-zhong. Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions [J]. Computer Science, 2021, 48(9): 345-351. |
[9] | LI Bei-bei, SONG Jia-rui, DU Qing-yun, HE Jun-jiang. DRL-IDS:Deep Reinforcement Learning Based Intrusion Detection System for Industrial Internet of Things [J]. Computer Science, 2021, 48(7): 47-54. |
[10] | CHENG Xi, CAO Xiao-mei. SQL Injection Attack Detection Method Based on Information Carrying [J]. Computer Science, 2021, 48(7): 70-76. |
[11] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
[12] | CAO Yang-chen, ZHU Guo-sheng, QI Xiao-yun, ZOU Jie. Research on Intrusion Detection Classification Based on Random Forest [J]. Computer Science, 2021, 48(6A): 459-463. |
[13] | YU Jian-ye, QI Yong, WANG Bao-zhuo. Distributed Combination Deep Learning Intrusion Detection Method for Internet of Vehicles Based on Spark [J]. Computer Science, 2021, 48(6A): 518-523. |
[14] | JIA Lin, YANG Chao, SONG Ling-ling, CHENG Zhenand LI Bei-jun. Improved Negative Selection Algorithm and Its Application in Intrusion Detection [J]. Computer Science, 2021, 48(6): 324-331. |
[15] | WANG Ying-ying, CHANG Jun, WU Hao, ZHOU Xiang, PENG Yu. Intrusion Detection Method Based on WiFi-CSI [J]. Computer Science, 2021, 48(6): 343-348. |
|