Computer Science ›› 2021, Vol. 48 ›› Issue (11): 102-115.doi: 10.11896/jsjkx.210600015

• Blockchain Technology • Previous Articles     Next Articles

Research Progress on Blockchain-based Cloud Storage Security Mechanism

XU Kun, FU Yin-jin, CHEN Wei-wei, ZHANG Ya-nan   

  1. College of Command and Control Engineering,Army Engineering University of PLA,Nanjing 210007,China
  • Received:2021-06-01 Revised:2021-07-12 Online:2021-11-15 Published:2021-11-10
  • About author:XU Kun,born in 1997,postgraduate.Her main research interests include cloud storage and blockchain.
    CHEN Wei-wei,born in 1967,professor,is a member of China Computer Federation .Her main research interests include services computing and cloud computing.
  • Supported by:
    National Natural Science Foundation of China(61402518) and Natural Science Foundation of Jiangsu Province(BK20191327).

Abstract: Cloud storage enables users to obtain cheap online storage services on demand through network connection anytime and anywhere.However,due to the untrustability of cloud service providers,third-party institutions and users as well as the inevitable malicious attacks,there are many security vulnerabilities of cloud storage.Blockchain has the potential to build a trusted platform with its characteristics of decentralization,persistence,anonymity and auditability.Therefore,the research on cloud storage security mechanism based on blockchain technology has become a research trend.Based on this,the security architecture of cloud sto-rage system and the security of blockchain technology are first outlined,then the literature review and comparative analysis are conducted from four aspects of access control,integrity verification,data deduplication and data provenance.Finally,the technical challenges of blockchain-based cloud storage security mechanism are analyzed,summarized and prospected.

Key words: Access control, Blockchain, Cloud storage security, Data deduplication, Data provenance, Integrity verification

CLC Number: 

  • TP311
[1]CHAI Q,GONG G.Verifiable symmetric searchable encryption for semi-honest-but-curious cloud servers[C]//2012 IEEE International Conference on Communications (ICC).IEEE,2012:917-922.
[2]ALMORSY M,GRUNDY J,MÜLLER I.An analysis of thecloud computing security problem[J].arXiv:1609.01107,2016.
[3]WU J,PING L,GE X,et al.Cloud storage as the infrastructure of cloud computing[C]//2010 International Conference on Intelligent Computing and Cognitive Informatics.IEEE,2010:380-383.
[4]FU Y,LUO S,SHU J.Survey of Secure Cloud Storage System and Key Technologies[J].Journal of Computer Research and Development,2013(1):136-145.
[5]NAKAMOTO S.Bitcoin:A peer-to-peer electronic cash system[J/OL].Decentralized Business Review,2008:21260.https://www.researchgate.net/publication/228640975_Bitcoin_A_Peer-to-Peer_Electronic_Cash_System.
[6]ZHENG Z,XIE S,DAI H,et al.An Overview of BlockchainTechnology:Architecture,Consensus,and Future Trends[C]//IEEE International Congress on Big Data.Piscaway:IEEE,2017.
[7]SEGURA S D,PÉREZ-SOLÀ C,NAVARRO-ARRIBAS G,et al.Analysis of the Bitcoin UTXO Set[C]//22nd International Conference on Financial Cryptography and Data Security(FC 2018).2018.
[8]Protocol Labs.Filecoin:A Decentralized Storage Network[OL].https://filecoin.io/filecoin.pdf.
[9]BENET J.Ipfs-content addressed,versioned,p2p file system[J].arXiv:1407.3561,2014.
[10]WILKINSON S.Storj A Peer-to-Peer Cloud Storage Network[OL]. http://storj.io/storj.pdf.
[11]VORICK D,CHAMPINE L.Sia:Simple decentralized storage[OL].https://blockchainlab.com/pdf/whitepaper3.pdf.
[12]LAMBDA P.A Blockchain Infrastructure Providing Unlimited Storage Capabilities[OL].https://www.lambdastorage.com/doc/Lambda%E7%BB%8F%E6%B5%8E%E7%99%BD%E7%9A%AE%E4%B9%A6.pdf.
[13]TAVIZI T,SHAJARI M,DODANGEH P.A usage controlbased architecture for cloud environments[C]//2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.IEEE,2012:1534-1539.
[14]LIN G Y,HE S,HUANG H,et al.Access control security mo-del based on behavior in cloud computing environment[J].Journal on Communications,2012,33(3):59-66.
[15]BETHENCOURT J,SAHAI A,WATERS B.Ciphertext-policy attribute-based encryption[C]//2007 IEEE Symposium on Security and Privacy (SP'07).IEEE,2007:321-334.
[16]SOHRABI N,YI X,TARI Z,et al.BACC:blockchain-based access control for cloud data[C]//Proceedings of the Australasian Computer Science Week Multiconference.2020:1-10.
[17]GUO J,YANG W,LAM K Y,et al.Using blockchain to control access to cloud data[C]//International Conference on Information Security and Cryptology.Springer,Cham,2018:274-288.
[18]YANG C,TAN L,SHI N,et al.AuthPrivacyChain:A blockchain-based access control framework with privacy protection in cloud[J].IEEE Access,2020,8:70604-70615.
[19]SUKHODOLSKIY I,ZAPECHNIKOV S.A blockchain-based access control system for cloud storage[C]//2018 IEEE Confe-rence of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus).IEEE,2018:1575-1578.
[20]WANG S,WANG X,ZHANG Y.A secure cloud storage framework with access control based on blockchain[J].IEEE Access,2019,7:112713-112725.
[21]QIN X,HUANG Y,YANG Z,et al.A Blockchain-based access control scheme with multiple attribute authorities for secure cloud data sharing[J].Journal of Systems Architecture,2021,112:101854.
[22]GAO S,PIAO G,ZHU J,et al.TrustAccess:A trustworthy secure ciphertext-policy and attribute hiding access control scheme based on blockchain[J].IEEE Transactions on Vehicular Technology,2020,69(6):5784-5798.
[23]GUO L,YANG X,YAU W C.TABE-DAC:Efficient Traceable Attribute-Based Encryption Scheme With Dynamic Access Control Based on Blockchain[J].IEEE Access,2021,9:8479-8490.
[24]QIN X,HUANG Y,YANG Z,et al.LBAC:A lightweightblockchain-based access control scheme for the internet of things[J].Information Sciences,2021,554:222-235.
[25]KUMAR R,PALANISAMY B,SURAL S.BEAAS:Blockchain Enabled Attribute-Based Access Control as a Service[C]//2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).IEEE,2021:1-3.
[26]WANG S,ZHANG Y,ZHANG Y.A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems[J].IEEE Access,2018,6:38437-38450.
[27]SCHIAVO F P,SASSONE V,NICOLETTI L,et al.Faas:Fe-deration-as-a-service[J].arXiv:1612.03937,2016.
[28]FERDOUS M S,MARGHERI A,PACI F,et al.Decentralisedruntime monitoring for access control systems in cloud federations[C]//2017 IEEE 37th International Conference on Distri-buted Computing Systems (ICDCS).IEEE,2017:2632-2633.
[29]ALANSARI S,PACI F,SASSONE V.A distributed access control system for cloud federations[C]//2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).IEEE,2017:2131-2136.
[30]PRIYADHARSHINI B,PARVATHI P.Data integrity in cloud storage[C]//IEEE-international conference on advances in engineering,science and management (ICAESM-2012).IEEE,2012:261-265.
[31]YANG C.Research on Blockchain-based Cloud Storage Data Integrity Detection[D].School of Computer Science and Enginee-ring,2020.
[32]GAETANI E,ANIELLO L,BALDONI R,et al.Blockchain-based database to ensure data integrity in cloud computing environments[C]//the First Italian Conference on Cybersecurity (ITASEC17).2017:146-155.
[33]ZIKRATOV I,KUZMIN A,AKIMENKO V,et al.Ensuring data integrity using blockchain technology[C]//2017 20thConfe-rence of Open Innovations Association (FRUCT).IEEE,2017:534-539.
[34]WEI P C,WANG D,ZHAO Y,et al.Blockchain data-basedcloud data integrity protection mechanism[J].Future Generation Computer Systems,2020,102:902-911.
[35]XUE J,XU C,ZHAO J,et al.Identity-based public auditing for cloud storage systems against malicious auditors via blockchain[J].Science China Information Sciences,2019,62(3):32104.
[36]ZHANG G,YANG Z,XIE H,et al.A secure authorized dedupli-cation scheme for cloud data based on blockchain[J].Information Processing & Management,2021,58(3):102510.
[37]LI S,LIU J,YANG G,et al.A Blockchain-Based Public Auditing Scheme for Cloud Storage Environment without Trusted Auditors[J].Wireless Communications and Mobile Computing,2020,2020:8841711.
[38]LI J,WU J,JIANG G,et al.Blockchain-based public auditing for big data in cloud storage[J].Information Processing & Management,2020,57(6):102382.
[39]PINHEIRO A,CANEDO E D,DE SOUSA R T,et al.Monitoring File Integrity Using Blockchain and Smart Contracts[J].IEEE Access,2020,8:198548-198579.
[40]ZHANG C,XU Y,HU Y,et al.A blockchain-based multi-cloud storage data auditing scheme to locate faults[J].IEEE Transactions on Cloud Computing,2021:3057771.
[41]YUE D,LI R,ZHANG Y,et al.Blockchain based data integrity verification in P2P cloud storage[C]//2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS).IEEE,2018:561-568.
[42]XUE J,XU C,ZHANG Y,et al.DStore:a distributed cloudstorage system based on smart contracts and blockchain[C]//International Conference on Algorithms and Architectures for Parallel Processing.Cham:Springer,2018:385-401.
[43]WANG J,PENG F,TIAN H,et al.Public auditing of log integrity for cloud storage systems via blockchain[C]//International Conference on Security and Privacy in New Computing Environments.Cham:Springer,2019:378-387.
[44]ZHANG Y,XU C,LIN X,et al.Blockchain-based public integrity verification for cloud storage against procrastinating auditors[J].IEEE Transactions on Cloud Computing,2019:2908400.
[45]YUAN H,CHEN X,WANG J,et al.Blockchain-based public auditing and secure deduplication with fair arbitration[J].Information Sciences,2020,541:409-425.
[46]DOUCEUR J R,ADYA A,BOLOSKY W J,et al.Reclaiming space from duplicate files in a serverless distributed file system[C]//Proceedings 22nd International Conference on Distributed Computing Systems.IEEE,2002:617-624.
[47]BELLARE M,KEELVEEDHI S,RISTENPART T.Message-locked encryption and secure deduplication[C]//Annual International Conference on the Theory and Applications of Cryptographic Techniques.Springer,Berlin,Heidelberg,2013:296-312.
[48]LI Y,ZHU L,SHEN M,et al.Cloudshare:towards a cost-efficient and privacy-preserving alliance cloud using permissioned blockchains[C]//International Conference on Mobile Networks and Management.Springer,Cham,2017:339-352.
[49]LI J,WU J,CHEN L,et al.Deduplication with blockchain for secure cloud storage[C]//CCF Conference on Big Data.Sprin-ger,Singapore,2018:558-570.
[50]ZHANG G,XIE H,YANG Z,et al.BDKM:A Blockchain-Based Secure Deduplication Scheme with Reliable Key Management[J].Neural Processing Letters,2021(3):1-18.
[51]ZHANG G,YANG Z,XIE H,et al.A secure authorized deduplication scheme for cloud data based on blockchain[J].Information Processing & Management,2021,58(3):102510.
[52]HUANG H,CHEN Q,ZHOU Y,et al.Blockchain-Based Secure Cloud Data Deduplication with Traceability[C]//International Conference on Blockchain and Trustworthy Systems.Springer,Singapore,2020:295-302.
[53]XU Y,ZHANG C,WANG G,et al.A blockchain-enabled deduplicatable data auditing mechanism for network storage services[J/OL].IEEE Transactions on Emerging Topics in Computing,2020.https://www.researchgate.net/publication/342539890_A_Blockchain-enabled_Deduplicatable_Data_Auditing_Mechanism_for_Network_Storage_Services.
[54]MING H,ZHANG Y,FU X.Survey of Data Provenance[J].Journal of Chinese Computer Systems,2012(9):1917-1923.
[55]GAI K,GUO J,ZHU L,et al.Blockchain meets cloud computing:a survey[J].IEEE Communications Surveys & Tutorials,2020,22(3):2009-2030.
[56]LIANG X,SHETTY S S,TOSH D,et al.ProvChain:Block-chain-based Cloud Data Provenance[M].Blockchain for Distri-buted Systems Security,2019:67-94.
[57]ZHANG Y,LIN X,XU C.Blockchain-based secure data provenance for cloud storage[C]//International Conference on Information and Communications Security.Springer,Cham,2018:3-19.
[58]LIANG X,SHETTY S,TOSH D,et al.Provchain:A block-chain-based data provenance architecture in cloud environment with enhanced privacy and availability[C]//2017 17th IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing (CCGRID).IEEE,2017:468-477.
[59]Tierion:Blockchain Proof Engine | API[OL].2018.https://tierion.com.
[60]SIFAH E B,XIA Q,AGYEKUM K O B O,et al.A Blockchain Approach to Ensuring Provenance to Outsourced Cloud Data in a Sharing Ecosystem[J/OL].IEEE Systems Journal,2021:3068224.https://ieeexplore.ieee.org/document/9405789.
[61]SHETTY S,RED V,KAMHOUA C,et al.Data provenance assurance in the cloud using blockchain[C]//Disruptive Technologies in Sensors and Sensor Systems.International Society for Optics and Photonics,2017,10206:1020601.
[62]TOSH D,SHETTY S,LIANG X,et al.Data provenance in the cloud:A blockchain-based approach[J].IEEE Consumer Electronics Magazine,2019,8(4):38-44.
[63]LI H,GAI K,FANG Z,et al.Blockchain-enabled data provenance in cloud datacenter reengineering[C]//Proceedings of the 2019 ACM International Symposium on Blockchain and Secure Critical Infrastructure.2019:47-55.
[64]ALI S,WANG G,BHUIYAN M Z A,et al.Secure data provenance in cloud-centric internet of things via blockchain smart contracts[C]//2018 IEEE SmartWorld,Ubiquitous Intelligence &Computing,Advanced & Trusted Computing,Scalable Computing &Communications,Cloud & Big Data Computing,Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/ SCI).IEEE,2018:991-998.
[65]SHAFAGH H,BURKHALTER L,HITHNAWI A,et al.Towards blockchain-based auditable storage and sharing of IoT data[C]//Proceedings of the 2017 on Cloud Computing Security Workshop.2017:45-50.
[66]SIDDIQUI M S,ALI T,NADEEM A,et al.BlockTrack-L:A lightweight blockchain-based provenance message tracking in IoT[J].International Journal of Advanced Computer Science and Applications,2020,11(4):463-470.
[67]POURVAHAB M,EKBATANIFARD G.Digital forensics ar-chitecture for evidence collection and provenance preservation in iaas cloud environment using sdn and blockchain technology[J].IEEE Access,2019,7:153349-153364.
[68]ZHANG Y,WU S,JIN B,et al.A blockchain-based process provenance for cloud forensics[C]//2017 3rd IEEE Internatio-nal Conference on Computer and Communications (ICCC).IEEE,2017:2470-2473.
[69]GOURU N,VADLAMANI N L.DistProv-Data Provenance in Distributed Cloud for Secure Transfer of Digital Assets with Ethereum Blockchain using ZKP[M]//Cyber Warfare and Terrorism:Concepts,Methodologies,Tools,and Applications.IGI Global,2020:866-890.
[70]BERNABE J B,CANOVAS J L,HERNANDEZ-RAMOS J L,et al.Privacy-preserving solutions for blockchain:Review and challenges[J].IEEE Access,2019,7:164908-164940.
[71]JOSHI A P,HAN M,WANG Y.A survey on security and privacy issues of blockchain technology[J].Mathematical Foundations of Computing,2018,1(2):121-147.
[72]CHAUM D L.Untraceable electronic mail,return addresses,and digital pseudonyms[J].Communications of the ACM,1981,24(2):84-90.
[73]GOLDREICH O,MICALI S,WIGDERSON A.Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems[J].Journal of the ACM (JACM),1991,38(3):690-728.
[74]RIVEST R L,SHAMIR A,TAUMAN Y.How to leak a secret:Theory and applications of ring signatures[M]//Theoretical Computer Science.Springer,Berlin,Heidelberg,2006:164-186.
[75]DWORK C,ROTH A.The algorithmic foundations of differential privacy[J].Foundations and Trends in Theoretical Compu-ter Science,2014,9(3/4):211-407.
[76]BACK A,CORALLO M,DASHJR L,et al.Enabling blockchain innovations with pegged sidechains[OL].http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains,2014,72.
[1] GUO Peng-jun, ZHANG Jing-zhou, YANG Yuan-fan, YANG Shen-xiang. Study on Wireless Communication Network Architecture and Access Control Algorithm in Aircraft [J]. Computer Science, 2022, 49(9): 268-274.
[2] WANG Zi-kai, ZHU Jian, ZHANG Bo-jun, HU Kai. Research and Implementation of Parallel Method in Blockchain and Smart Contract [J]. Computer Science, 2022, 49(9): 312-317.
[3] FU Li-yu, LU Ge-hao, WU Yi-ming, LUO Ya-ling. Overview of Research and Development of Blockchain Technology [J]. Computer Science, 2022, 49(6A): 447-461.
[4] GAO Jian-bo, ZHANG Jia-shuo, LI Qing-shan, CHEN Zhong. RegLang:A Smart Contract Programming Language for Regulation [J]. Computer Science, 2022, 49(6A): 462-468.
[5] MAO Dian-hui, HUANG Hui-yu, ZHAO Shuang. Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance [J]. Computer Science, 2022, 49(6A): 523-530.
[6] LI Bo, XIANG Hai-yun, ZHANG Yu-xiang, LIAO Hao-de. Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios [J]. Computer Science, 2022, 49(6A): 723-728.
[7] ZHOU Hang, JIANG He, ZHAO Yan, XIE Xiang-peng. Study on Optimal Scheduling of Power Blockchain System for Consensus Transaction ofEach Unit [J]. Computer Science, 2022, 49(6A): 771-776.
[8] WANG Si-ming, TAN Bei-hai, YU Rong. Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence [J]. Computer Science, 2022, 49(6): 32-38.
[9] SUN Hao, MAO Han-yu, ZHANG Yan-feng, YU Ge, XU Shi-cheng, HE Guang-yu. Development and Application of Blockchain Cross-chain Technology [J]. Computer Science, 2022, 49(5): 287-295.
[10] YANG Zhen, HUANG Song, ZHENG Chang-you. Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE [J]. Computer Science, 2022, 49(5): 325-332.
[11] REN Chang, ZHAO Hong, JIANG Hua. Quantum Secured-Byzantine Fault Tolerance Blockchain Consensus Mechanism [J]. Computer Science, 2022, 49(5): 333-340.
[12] YANG Fei-fei, SHEN Si-yu, SHEN De-rong, NIE Tie-zheng, KOU Yue. Method on Multi-granularity Data Provenance for Data Fusion [J]. Computer Science, 2022, 49(5): 120-128.
[13] FENG Liao-liao, DING Yan, LIU Kun-lin, MA Ke-lin, CHANG Jun-sheng. Research Advance on BFT Consensus Algorithms [J]. Computer Science, 2022, 49(4): 329-339.
[14] YANG Xin-yu, PENG Chang-gen, YANG Hui, DING Hong-fa. Rational PBFT Consensus Algorithm with Evolutionary Game [J]. Computer Science, 2022, 49(3): 360-370.
[15] WANG Xin, ZHOU Ze-bao, YU Yun, CHEN Yu-xu, REN Hao-wen, JIANG Yi-bo, SUN Ling-yun. Reliable Incentive Mechanism for Federated Learning of Electric Metering Data [J]. Computer Science, 2022, 49(3): 31-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!