Computer Science ›› 2022, Vol. 49 ›› Issue (8): 247-256.doi: 10.11896/jsjkx.210700100
• Artificial Intelligence • Previous Articles Next Articles
SHI Dian-xi1,2,4, ZHAO Chen-ran1, ZHANG Yao-wen3, YANG Shao-wu1, ZHANG Yong-jun2
CLC Number:
[1]WIERING M A.Multi-agent reinforcement learning for traffic light control[C]//Machine Learning:Proceedings of the Seventeenth International Conference(ICML’2000).2000:1151-1158. [2]SALLAB A E L,ABDOU M,PEROT E,et al.Deep reinforcement learning framework for autonomous driving[J].Electronic Imaging,2017,2017(19):70-76. [3]ZHAI Y Y.Multi-agent reinforcement learning-driven dynamic channel allocation for unmanned aerial vehicles [J/OL].Telecommunications Technology.http://kns.cnki.net/kcms/detail/51.1267.TN.20220304.1008.002.html. [4]DENG Q T,HU DAN E,CAI T T,et al.Reactive Power Optimization Strategy of Distribution Network Based on Multi-Agent Deep Reinforcement Learning [J].New Technology of Electrical Engineering,2022,41(2):10-20. [5]WU Y,ZHANG B,YANG S,et al.Energy-efficient joint communication-motion planning for relay-assisted wireless robot surveillance[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications.IEEE,2017:1-9. [6]WANG T,WANG J,ZHENG C,et al.Learning nearly decomposable value functions via communication minimization[J].arXiv:1910.05366,2019. [7]LOWE R,WU Y I,TAMAR A,et al.Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Advances in Neural Information Processing Systems.2017:6379-6390. [8]FOERSTER J,FARQUHAR G,AFOURAS T,et al.Counterfactual multi-agent policy gradients[J].arXiv:1705.08926,2017. [9]RASHID T,SAMVELYAN M,DE WITT C S,et al.QMIX:Monotonic value function factorisation for deep multi-agent reinforcement learning[J].arXiv:1803.11485,2018. [10]YANG Y,LUO R,LI M,et al.Mean field multi-agent reinforcement learning[J].arXiv:1802.05438,2018. [11]JAQUES N,LAZARIDOU A,HUGHES E,et al.Social in-fluence as intrinsic motivation for multi-agent deep reinforcement learning[C]//International Conference on Machine Lear-ning.PMLR,2019:3040-3049. [12]SUKHBAATAR S,FERGUS R.Learning multiagent communication with backpropagation[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:2252-2260. [13]LIU Y,WANG W,HU Y,et al.Multi-Agent Game Abstraction via Graph Attention Neural Network[C]//AAAI.2020:7211-7218. [14]YOU J,LIU B,YING Z,et al.Graph convolutional policy network for goal-directed molecular graph generation[C]//Advances in Neural Information Processing Systems.2018:6410-6421. [15]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [16]KAPETANAKIS S,KUDENKO D.Reinforcement learning of coordination in heterogeneous cooperative multi-agent systems[M]//Adaptive Agents and Multi-Agent Systems II.Berlin:Springer,2004:119-131. [17]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.PMLR,2015:448-456. [18]WANG W,YANG T,LIU Y,et al.From Few to More:Large-Scale Dynamic Multiagent Curriculum Learning[C]//AAAI.2020:7293-7300. [19]ZAMBALDI V,RAPOSO D,SANTORO A,et al.Relationaldeep reinforcement learning[J].arXiv:1806.01830,2018. [20]TACCHETTI A,SONG H F,MEDIANO P A M,et al.Relational forward models for multi-agent learning[J].arXiv:1809.11044,2018. [21]MALYSHEVA A,SUNG T T,SOHN C B,et al.Deep multi-agent reinforcement learning with relevance graphs[J].arXiv:1811.12557,2018. [22]ZHANG T,XU H,WANG X,et al.Multi-Agent Collaboration via Reward Attribution Decomposition[J].arXiv:2010.08531,2020. [23]SCHULMAN J,LEVINE S,ABBEEL P,et al.Trust region po-licy optimization[C]//International Conference on Machine Learning.PMLR,2015:1889-1897. [24]WANG Q,XIONG J,HAN L,et al.Exponentially WeightedImitation Learning for Batched Historical Data[C]//NeurIPS.2018:6291-6300. [25]MORDATCH I,ABBEEL P.Emergence of Grounded Compositional Language in Multi-Agent Populations[J].arXiv:1703.04908,2017. [26]VINYALS O,EWALDS T,BARTUNOV S,et al.Starcraft ii:A new challenge for reinforcement learning[J].arXiv:1708.04782,2017. [27]SAMVELYAN M,RASHID T,DE WITT C S,et al.The starcraft multi-agent challenge[J].arXiv:1902.04043,2019. [28]TAN M.Multi-agent reinforcement learning:Independent vs.cooperative agents[C]//Proceedings of the Tenth International Conference on Machine Learning.1993:330-337. [29]DU Y,HAN L,FANG M,et al.Liir:Learning individual intrinsic reward in multi-agent reinforcement learning[C]//33rd Conference on Neural Information Processing Systems(NeurIPS 2019).Vancouver,Cannada,2019. |
[1] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[2] | ZENG Wei-liang, CHEN Yi-hao, YAO Ruo-yu, LIAO Rui-xiang, SUN Wei-jun. Application of Spatial-Temporal Graph Attention Networks in Trajectory Prediction for Vehicles at Intersections [J]. Computer Science, 2021, 48(6A): 334-341. |
[3] | DU Shao-hua, WAN Huai-yu, WU Zhi-hao, LIN You-fang. Customs Commodity HS Code Classification Integrating Text Sequence and Graph Information [J]. Computer Science, 2021, 48(4): 97-103. |
[4] | LIU Zhi-xin, ZHANG Ze-hua, ZHANG Jie. Top-N Recommendation Method for Graph Attention Based on Multi-level and Multi-view [J]. Computer Science, 2021, 48(4): 104-110. |
[5] | DU Wei, DING Shi-fei. Overview on Multi-agent Reinforcement Learning [J]. Computer Science, 2019, 46(8): 1-8. |
|