Computer Science ›› 2023, Vol. 50 ›› Issue (7): 325-331.doi: 10.11896/jsjkx.220800176
• Information Security • Previous Articles Next Articles
LI Kun1, GUO Wei1, ZHANG Fan1, DU Jiayu2, YANG Meiyue2
CLC Number:
[1]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587. [2]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [3]WANG J,ZHANG C,QI X,et al.A Survey of Intelligent Malware Detection on Windows Platform [J].Journal of Computer Research and Development,2021,58(5):977-994. [4]CUI Z,XUE F,CAI X,et al.Detection of malicious code va-riants based on deep learning[J].IEEE Transactions on Industrial Informatics,2018,14(7):3187-3196. [5]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013. [6]GROSSE K,PAPERNOT N,MANOHARAN P,et al.Adver-sarial perturbations against deep neural networks for malware classification[J].arXiv:1606.04435,2016. [7]CHEN J,ZOU J,YUAN J,et al.Black-box Adversarial Attack Method Towards Malware Detection [J].Computer Science,2021,48(5):60-67. [8]XIAO M,GUO C,SHEN G,et al.Adversarial Example Remaining Availability and Functionality [J].Journal of Frontiers of Computer Science and Technology,2022,16(10):2286-2297. [9]KHORMALI A,ABUSNAINA A,CHEN S,et al.COPYCAT,practical adversarial attackson visualization-based malware detection[J].arXiv:1909.09735,2019. [10]NATARAJ L,KARTHIKEYAN S,JACOB G,et al.Malware images,visualization and automatic classification[C]//Procee-dings of the 8th International Symposium on Visualization for Cyber Security.2011:1-7. [11]LIU X,ZHANG J,LIN Y,et al.ATMPA,attacking machine learning-based malware visualization detection methods via adversarial examples[C]//2019 IEEE/ACM 27th International Symposium on Quality of Service(IWQoS).IEEE,2019:1-10. [12]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [13]CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//2017 IEEE Symposium on Security and Privacy(SP).IEEE,2017:39-57. [14]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [15]BENKRAOUDA H,QIAN J,TRAN H Q,et al.Attacks on Vi-sualization-Based Malware Detection,Balancing Effectiveness and Executability[C]//International Workshop on Deployable Machine Learning for Security Defense.Cham:Springer,2021:107-131. [16]DAS S,SUGANTHAN P N.Differential evolution,A survey of the state-of-the-art[J].IEEE Transactions on Evolutionary Computation,2010,15(1):4-31. [17]geatpy.The genetic and evolutionary algorithm toolbox with high performance in python[EB/OL].http://www.geatpy.com/. [18]Microsoft Inc.PE Format [EB/OL].https://docs.microsoft.com/en-us/windows/win32/debug/pe-format. [19]DEMETRIO L,COULL S E,BIGGIO B,et al.Adversarialexemples,A survey and experimental evaluation of practical attacks on machine learning for windows malware detection[J].ACM Transactions on Privacy and Security(TOPS),2021,24(4):1-31. [20]KOLOSNJAJI B,DEMONTIS A,BIGGIO B,et al.Adversarial malware binaries,Evading deep learning for malware detection in executables[C]//2018 26th European Signal Processing Conference(EUSIPCO).IEEE,2018:533-537. [21]WENZL M,MERZDOVNIK G,ULLRICH J,et al.From hack to elaborate technique-a survey on binary rewriting[J].ACM Computing Surveys(CSUR),2019,52(3):1-37. [22]VirusShare.com-Because Sharing is Caring [EB/OL].ht-tps://virusshare.com/. [23]TEKEREK A,YAPICI M M.A novel malware classification and augmentation model based on convolutional neural network[J].Computers & Security,2022,112,102515. |
[1] | WANG Mingxia, XIONG Yun. Disease Diagnosis Prediction Algorithm Based on Contrastive Learning [J]. Computer Science, 2023, 50(7): 46-52. |
[2] | SHEN Zhehui, WANG Kailai, KONG Xiangjie. Exploring Station Spatio-Temporal Mobility Pattern:A Short and Long-term Traffic Prediction Framework [J]. Computer Science, 2023, 50(7): 98-106. |
[3] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[4] | ZHOU Bo, JIANG Peifeng, DUAN Chang, LUO Yuetong. Study on Single Background Object Detection Oriented Improved-RetinaNet Model and Its Application [J]. Computer Science, 2023, 50(7): 137-142. |
[5] | MAO Huihui, ZHAO Xiaole, DU Shengdong, TENG Fei, LI Tianrui. Short-term Subway Passenger Flow Forecasting Based on Graphical Embedding of Temporal Knowledge [J]. Computer Science, 2023, 50(7): 213-220. |
[6] | LI Yuqiang, LI Linfeng, ZHU Hao, HOU Mengshu. Deep Learning-based Algorithm for Active IPv6 Address Prediction [J]. Computer Science, 2023, 50(7): 261-269. |
[7] | GAO Xiang, TANG Jiqiang, ZHU Junwu, LIANG Mingxuan, LI Yang. Study on Named Entity Recognition Method Based on Knowledge Graph Enhancement [J]. Computer Science, 2023, 50(6A): 220700153-6. |
[8] | ZENG Wu, MAO Guojun. Few-shot Learning Method Based on Multi-graph Feature Aggregation [J]. Computer Science, 2023, 50(6A): 220400029-10. |
[9] | HOU Yanrong, LIU Ruixia, SHU Minglei, CHEN Changfang, SHAN Ke. Review of Research on Denoising Algorithms of ECG Signal [J]. Computer Science, 2023, 50(6A): 220300094-11. |
[10] | GU Yuhang, HAO Jie, CHEN Bing. Semi-supervised Semantic Segmentation for High-resolution Remote Sensing Images Based on DataFusion [J]. Computer Science, 2023, 50(6A): 220500001-6. |
[11] | LIANG Mingxuan, WANG Shi, ZHU Junwu, LI Yang, GAO Xiang, JIAO Zhixiang. Survey of Knowledge-enhanced Natural Language Generation Research [J]. Computer Science, 2023, 50(6A): 220200120-8. |
[12] | WANG Dongli, YANG Shan, OUYANG Wanli, LI Baopu, ZHOU Yan. Explainability of Artificial Intelligence:Development and Application [J]. Computer Science, 2023, 50(6A): 220600212-7. |
[13] | GAO Xiang, WANG Shi, ZHU Junwu, LIANG Mingxuan, LI Yang, JIAO Zhixiang. Overview of Named Entity Recognition Tasks [J]. Computer Science, 2023, 50(6A): 220200119-8. |
[14] | LI Yang, WANG Shi, ZHU Junwu, LIANG Mingxuan, GAO Xiang, JIAO Zhixiang. Summarization of Aspect-level Sentiment Analysis [J]. Computer Science, 2023, 50(6A): 220400077-7. |
[15] | LI Yang, TANG Jiqiang, ZHU Junwu, LIANG Mingxuan, GAO Xiang. Aspect-based Sentiment Analysis Based on Prompt and Knowledge Enhancement [J]. Computer Science, 2023, 50(6A): 220300279-7. |
|