Computer Science ›› 2023, Vol. 50 ›› Issue (10): 156-164.doi: 10.11896/jsjkx.220900031
• Artificial Intelligence • Previous Articles Next Articles
PENG Yingxuan1, SHI Dianxi1,2,3, YANG Huanhuan1, HU Haomeng1, YANG Shaowu1
CLC Number:
[1]GUPTA J K,EGOROV M,KOCHENDERFER M.Cooperative multi-agent control using deep reinforcement learning[C]//International Conference on Autonomous Agents and Multiagent Systems.Cham:Springer,2017:66-83. [2]BUSONIU L,BABUSKA R,DE SCHUTTER B.Multi-agentreinforcement learning:A survey[C]//2006 9th International Conference on Control,Automation,Robotics and Vision.IEEE,2006:1-6. [3]HERNANDEZ-LEAL P,KARTAL B,TAYLOR M E.A survey and critique of multiagent deep reinforcement learning[J].Autonomous Agents and Multi-Agent Systems,2019,33(6):750-797. [4]HOLTE R C,PEREZ M B,ZIMMER R M,et al.HierarchicalA*:Searching abstraction hierarchies efficiently[C]//AAAI/IAAI,Vol.1.1996:530-535. [5]DORIGO M,MANIEZZO V,COLORNI A.The ant system:An autocatalytic optimizing process[J].Clustering,1991,3(12):340. [6]KHATIB O.Real-time obstacle avoidance system for manipula-tors and mobile robots[C]//Proceedings of the 1985 IEEE International Conference on Robotics and Automation.St.Louis,MO,USA,1985:25-28. [7]PU Z Q,YI J Q,LIU Z,et al.A review of collaborative know-ledge and Data driven swarm intelligent decision making[J].Acta Automatica Sinica,2022,48(3):1-17. [8]NGUYEN T T,NGUYEN N D,NAHAVANDI S.Deep reinforcement learning for multiagent systems:A review of challenges,solutions,and applications[J].IEEE Transactions on Cybernetics,2020,50(9):3826-3839. [9]FOERSTER J,ASSAEL I A,DE FREITAS N,et al.Learning to communicate with deep multi-agent reinforcement learning[J].Advances in Neural Information Processing Systems,2016,29:2137-2145. [10]SARTORETTI G,KERR J,SHI Y,et al.Primal:Pathfindingvia reinforcement and imitation multi-agent learning[J].IEEE Robotics and Automation Letters,2019,4(3):2378-2385. [11]HAN R,CHEN S,HAO Q.Cooperative multi-robot navigation in dynamic environment with deep reinforcement learning[C]//2020 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2020:448-454. [12]SINGH A,JAIN T,SUKHBAATAR S.Learning when to communicate at scale in multiagent cooperative and competitive tasks[J].arXiv:1812.09755,2018. [13]WU J,SUN X,ZENG A,et al.Spatial intention maps for multi-agent mobile manipulation[C]//2021 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2021:8749-8756. [14]JARADAT M A K,AL-ROUSAN M,QUADAN L.Reinforce-ment based mobile robot navigation in dynamic environment[J].Robotics and Computer-Integrated Manufacturing,2011,27(1):135-149. [15]DUGULEANA M,MOGAN G.Neural networks based rein-forcement learning for mobile robots obstacle avoidance[J].Expert Systems with Applications,2016,62:104-115. [16]XIE L,WANG S,MARKHAM A,et al.Towards monocular vision based obstacle avoidance through deep reinforcement lear-ning[J].arXiv:1706.09829,2017. [17]KAHN G,VILLAFLOR A,DING B,et al.Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation[C]//2018 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2018:5129-5136. [18]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing atari with deep reinforcement learning[J].arXiv:1312.5602,2013. [19]SUNEHAG P,LEVER G,GRUSLYS A,et al.Value-decompo-sition networks for cooperative multi-agent learning[J].arXiv:1706.05296,2017. [20]LONG P,FAN T,LIAO X,et al.Towards optimally decentra-lized multi-robot collision avoidance via deep reinforcement lear-ning[C]//2018 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2018:6252-6259. [21]LIN J,YANG X,ZHENG P,et al.End-to-end decentralizedmulti-robot navigation in unknown complex environments via deep reinforcement learning[C]//2019 IEEE International Conference on Mechatronics and Automation(ICMA).IEEE,2019:2493-2500. [22]MOHSENI-KABIR A,ISELE D,FUJIMURA K.Interaction-aware multi-agent reinforcement learning for mobile agents with individual goals[C]//2019 International Conference on Robotics and Automation(ICRA).IEEE,2019:3370-3376. [23]WANG B,LIU Z,LI Q,et al.Mobile robot path planning in dynamic environments through globally guided reinforcement learning[J].IEEE Robotics and Automation Letters,2020,5(4):6932-6939. [24]LIU Z,CHEN B,ZHOU H,et al.Mapper:Multi-agent pathplanning with evolutionary reinforcement learning in mixed dynamic environments[C]//2020 IEEE/RSJ International Confe-rence on Intelligent Robots and Systems(IROS).IEEE,2020:11748-11754. [25]WANG D,DENG H.Multirobot coordination with deep rein-forcement learning in complex environments[J].Expert Systems with Applications,2021,180:115128. [26]LOWE R,WU Y I,TAMAR A,et al.Multi-agent actor-critic for mixed cooperative-competitive environments[J].Advances in Neural Information Processing Systems,2017(30):6379-6390. [27]VINYALS O,BABUSCHKIN I,CZARNECKI W M,et al.Grandmaster level in StarCraft II using multi-agent reinforcement learning[J].Nature,2019,575(7782):350-354. [28]FOERSTER J,NARDELLI N,FARQUHAR G,et al.Stabili-sing experience replay for deep multi-agent reinforcement lear-ning[C]//International Conference on Machine Learning.PMLR,2017:1146-1155. [29]QI S,ZHU S C.Intent-aware multi-agent reinforcement learning[C]//2018 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2018:7533-7540. [30]FU J,LI W,DU J,et al.A multiscale residual pyramid attention network for medical image fusion[J].Biomedical Signal Proces-sing and Control,2021,66:102488. [31]ZHAI Y,DING B,LIU X,et al.Decentralized multi-robot colli-sion avoidance in complex scenarios with selective communication[J].IEEE Robotics and Automation Letters,2021,6(4):8379-8386. [32]WANG X,LIAN L,YU S X.Unsupervised visual attention and invariance for reinforcement learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:6677-6687. [33]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [34]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional blockattention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [35]VAN HASSELT H,GUEZ A,SILVER D.Deep reinforcement learning with double q-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. |
[1] | LIU Xingguang, ZHOU Li, ZHANG Xiaoying, CHEN Haitao, ZHAO Haitao, WEI Jibo. Edge Intelligent Sensing Based UAV Space Trajectory Planning Method [J]. Computer Science, 2023, 50(9): 311-317. |
[2] | LI Ke, YANG Ling, ZHAO Yanbo, CHEN Yonglong, LUO Shouxi. EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction [J]. Computer Science, 2023, 50(9): 318-330. |
[3] | LIN Xinyu, YAO Zewei, HU Shengxi, CHEN Zheyi, CHEN Xing. Task Offloading Algorithm Based on Federated Deep Reinforcement Learning for Internet of Vehicles [J]. Computer Science, 2023, 50(9): 347-356. |
[4] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[5] | LUO Yuanyuan, YANG Chunming, LI Bo, ZHANG Hui, ZHAO Xujian. Chinese Medical Named Entity Recognition Method Incorporating Machine ReadingComprehension [J]. Computer Science, 2023, 50(9): 287-294. |
[6] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[7] | JIN Tiancheng, DOU Liang, ZHANG Wei, XIAO Chunyun, LIU Feng, ZHOU Aimin. OJ Exercise Recommendation Model Based on Deep Reinforcement Learning and Program Analysis [J]. Computer Science, 2023, 50(8): 58-67. |
[8] | TENG Sihang, WANG Lie, LI Ya. Non-autoregressive Transformer Chinese Speech Recognition Incorporating Pronunciation- Character Representation Conversion [J]. Computer Science, 2023, 50(8): 111-117. |
[9] | WANG Jiahao, ZHONG Xin, LI Wenxiong, ZHAO Dexin. Human Activity Recognition with Meta-learning and Attention [J]. Computer Science, 2023, 50(8): 193-201. |
[10] | XIONG Liqin, CAO Lei, CHEN Xiliang, LAI Jun. Value Factorization Method Based on State Estimation [J]. Computer Science, 2023, 50(8): 202-208. |
[11] | WANG Yu, WANG Zuchao, PAN Rui. Survey of DGA Domain Name Detection Based on Character Feature [J]. Computer Science, 2023, 50(8): 251-259. |
[12] | YAN Mingqiang, YU Pengfei, LI Haiyan, LI Hongsong. Arbitrary Image Style Transfer with Consistent Semantic Style [J]. Computer Science, 2023, 50(7): 129-136. |
[13] | GAO Xiang, TANG Jiqiang, ZHU Junwu, LIANG Mingxuan, LI Yang. Study on Named Entity Recognition Method Based on Knowledge Graph Enhancement [J]. Computer Science, 2023, 50(6A): 220700153-6. |
[14] | ZHANG Tao, CHENG Yifei, SUN Xinxu. Graph Attention Networks Based on Causal Inference [J]. Computer Science, 2023, 50(6A): 220600230-9. |
[15] | CUI Lin, CUI Chenlu, LIU Zhengwei, XUE Kai. Speech Emotion Recognition Based on Improved MFCC and Parallel Hybrid Model [J]. Computer Science, 2023, 50(6A): 220800211-7. |
|