Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230100091-8.doi: 10.11896/jsjkx.230100091
• Image Processing & Multimedia Technology • Previous Articles Next Articles
LI Yueyue1, LIU Wanping1, HUANG Dong2
CLC Number:
[1]ZHOU Z H,ZHANG W T.Based on local structural similarity image denoising algorithm[C]//International Conference on Computer and Information Applications.2013:3313-3317. [2]MOHAN J,KRISHNAVENI V,GUO Y.A survey on the magnetic resonance image denoising methods[J].Biomedical Signal Processing and Control,2014,9:56-69. [3]YUE L,SHEN H,LI J,et al.Image super-resolution:The techniques,applications,and future[J].Signal Processing,2016,128:389-408. [4]BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).IEEE,2005,2:60-65. [5]DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactionson Image Processing,2007,16(8):2080-2095. [6]JAIN V,SEUNG H S.Natural image denoising with convolutional networks[J].Advances in Neural Information Processing Systems,2009,2:769-776. [7]BURGER H C,SCHULER C J,HARMELING S.Image denoi-sing:Can plain neural networks compete with BM3D?[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2012:2392-2399. [8]ZHANG K,ZUO W,CHEN Y,et al.Beyond a gaussian denoi-ser:Residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing,2017,26(7):3142-3155. [9]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [10]LI R,ZHENG S,DUAN C,et al.Classification of hyperspectral image based on double-branch dual-attention mechanism network[J].Remote Sensing,2020,12(3):582. [11]BAI J,CHEN R,LIU M.Feature-attention module for context-aware image-to-image translation[J].The Visual Computer,2020,36(10):2145-2159. [12]TIAN C,XU Y,LI Z,et al.Attention-guided CNN for image denoising[J].Neural Networks,2020,124:117-129. [13]LEHTINEN J,MUNKBERG J,HASSELGREN J,et al.Noise2Noise:learning image restoration without clean data[C]//International Conference on Machine Learning.PMLR,2018:2965-2974. [14]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Compu-ter-Assisted Intervention.Cham:Springer,2015:234-241. [15]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [16]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [17]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[C]//International Conference on Learning Representations.2021. [18]FEI J,DAI Y,WANG H,et al.Learning to mask:Towards ge-neralized face forgery detection[J].arXiv:2212.14309,2022. [19]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [20]GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifierneural networks[C]//Proceedings of The Fourteenth International Conference on Artificial Intelligence and Statistics.JMLR Workshop and Conference Proceedings,2011:315-323. [21]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.PMLR,2015:448-456. [22]ULYANOV D,VEDALDI A,LEMPITSKY V.Deep imageprior[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:9446-9454. [23]XU S P,LI C X,LIN G X,et al.Fast image noise level estimation algorithm based on principal component analysis and deep neural network[J].Acta Electronica Sinica,2019,47(2):274-281. [24]XU L F,YU J M.Research on the influence of different optimizers on LR performance under Gaussian noise [J].Computer Technology and Development,2020,30(3):7-12. [25]XU S P,LIU T Y,LIN Z Y,et al.Learning a two-stage blind convolutional denoising model for the removal of random-valued impulse noise[J].Chinese Journal ofComputers,2020,43(9):1673-1690. [26]MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//IEEE International Conference on ComputerVision.IEEE,2001:416-423. [27]ZEYDE R,ELAD M,PROTTER M.On Single Image Scale-Up Using Sparse-Representations[C]//International Conference on Curves and Surfaces.Berlin:Springer,2010:711-730. [28]BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-Complexity Single Image Super-Resolution Based on Nonnegative Neighbor Embedding[C]//British Machine Vision Confe-rence.BMVA Press,2012,135:1-10. [29]HUANG J B,SINGH A,AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:5197-5206. [30]TIMOFTE R,DE SMET V,VAN GOOL L.A+:Adjusted anchored neighborhood regression for fast super-resolution[C]//Asian Conference on Computer Vision.Cham:Springer,2015:111-126. [31]LEDIG C,THEIS L,HUSZÁR F,et al.Photo-realistic singleimage super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4681-4690. [32]WANG Z,LIU J,LI G,et al.Blind2Unblind:Self-Supervised Image Denoising with Visible Blind Spots[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:2027-2036. |
[1] | LI Ke, YANG Ling, ZHAO Yanbo, CHEN Yonglong, LUO Shouxi. EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction [J]. Computer Science, 2023, 50(9): 318-330. |
[2] | ZHAO Mingmin, YANG Qiuhui, HONG Mei, CAI Chuang. Smart Contract Fuzzing Based on Deep Learning and Information Feedback [J]. Computer Science, 2023, 50(9): 117-122. |
[3] | LI Haiming, ZHU Zhiheng, LIU Lei, GUO Chenkai. Multi-task Graph-embedding Deep Prediction Model for Mobile App Rating Recommendation [J]. Computer Science, 2023, 50(9): 160-167. |
[4] | HUANG Hanqiang, XING Yunbing, SHEN Jianfei, FAN Feiyi. Sign Language Animation Splicing Model Based on LpTransformer Network [J]. Computer Science, 2023, 50(9): 184-191. |
[5] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[6] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[7] | LUO Yuanyuan, YANG Chunming, LI Bo, ZHANG Hui, ZHAO Xujian. Chinese Medical Named Entity Recognition Method Incorporating Machine ReadingComprehension [J]. Computer Science, 2023, 50(9): 287-294. |
[8] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[9] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[10] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
[11] | ZHOU Ziyi, XIONG Hailing. Image Captioning Optimization Strategy Based on Deep Learning [J]. Computer Science, 2023, 50(8): 99-110. |
[12] | TENG Sihang, WANG Lie, LI Ya. Non-autoregressive Transformer Chinese Speech Recognition Incorporating Pronunciation- Character Representation Conversion [J]. Computer Science, 2023, 50(8): 111-117. |
[13] | ZHANG Xiao, DONG Hongbin. Lightweight Multi-view Stereo Integrating Coarse Cost Volume and Bilateral Grid [J]. Computer Science, 2023, 50(8): 125-132. |
[14] | WANG Jiahao, ZHONG Xin, LI Wenxiong, ZHAO Dexin. Human Activity Recognition with Meta-learning and Attention [J]. Computer Science, 2023, 50(8): 193-201. |
[15] | WANG Yu, WANG Zuchao, PAN Rui. Survey of DGA Domain Name Detection Based on Character Feature [J]. Computer Science, 2023, 50(8): 251-259. |
|