Computer Science ›› 2024, Vol. 51 ›› Issue (5): 162-171.doi: 10.11896/jsjkx.230300113
• Computer Graphics & Multimedia • Previous Articles Next Articles
JIAN Yingjie, YANG Wenxia, FANG Xi, HAN Huan
CLC Number:
[1]CHE A B,ZHANG H,LI C,et al.Single-stage 3D Object Detection Method Based on Point Cloud Data in Traffic Environment[J].Computer Science,2022,49(S2):567-572. [2]SHEN Q,CHEN Y L,LIU S,et al.A Two-level Network-based Algorithm for 3D Object Detection[J].Computer Science,2020,47(10):145-150. [3]GUO Y F,WU D H,WEI Q M.A Review of Point Cloud-based 3D Object Detection Methods Based on Deep Learning[J].Computer Application Research,2023,40(1):20-27. [4]QI C R,SU H,MO K,et al.PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2017:652-660. [5]QI C R,SU H,NIEßNER M,et al.Volumetric and Multi-View CNNs for Object Classification on 3D Data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2016:5648-5656. [6]SU H,MAJI S,KALOGERAKIS E,et al.Multi-view Convolutional Neural Networks for 3D Shape Recognition[C]//Proceedings of the IEEE International Conference on Computer Vision.New York:IEEE Press 2015:945-953. [7]ZHOU Y,TUZEL O.VoxelNet:End-to-End Learning for Point Cloud Based 3D Object Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2018:4490-4499. [8]WU Z,SONG S,KHOSLA A,et al.3D ShapeNets:A Deep Representation for Volumetric Shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2015:1912-1920. [9]QI C R,YI L,SU H,et al.PointNet++:Deep HierarchicalFeature Learning on Point Sets in a Metric Space[C]//Confe-rence and Workshop on Neural Information Processing Systems.Cambridge:MIT Press,2017:5099-5108. [10]SHI S,WANG X,LI H.PointRCNN:3D Object Proposal Ge-neration and Detection from Point Cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2019:770-779. [11]QI C R,LITANY O,HE K,et al.Deep Hough Voting for 3D Object Detection in Point Clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.New York:IEEE Press,2019:9277-9286. [12]QI C R,CHEN X,LITANY O,et al.ImVoteNet:Boosting 3D Object Detection in Point Clouds with Image Votes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2020:4404-4413. [13]CHENG B,SHENG L,SHI S,et al.Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2021:8963-8972. [14]ZHANG Z,SUN B,YANG H,et al.H3DNet:3D Object Detection Using Hybrid Geometric Primitives[C]//Computer Vision-ECCV 2020:16th European Conference.Berlin:Springer Press,2020:311-329. [15]WANG H,SHI S,YANG Z,et al.RBGNet:Ray-based Grouping for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2022:1110-1119. [16]LIU Z,ZHANG Z,CAO Y,et al.Group-Free 3D Object Detection via Transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.New York:IEEE Press,2021:2949-2958. [17]ZHENG Y,DUAN Y,LU J,et al.HyperDet3D:Learning aScene-conditioned 3D Object Detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2022:5585-5594. [18]WANG Y,SUN Y,LIU Z,et al.Dynamic Graph CNN forLearning on Point Clouds[J].ACM Transactions on Graphics(ToG),2019,38(5):1-12. [19]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is All You Need[C]//Conference and Workshop on Neural Information Processing Systems.Cambridge:MIT Press,2017:5998-6008. [20]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2018:7132-7141. [21]QIN Z,ZHANG P,WU F,et al.FcaNet:Frequency Channel Attention Networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.New York:IEEE Press,2021:783-792. [22]JADERBERG M,SIMONYAN K,Zisserman A.Spatial Transformer Networks[C]//Conference and Workshop on Neural Information Processing Systems.Cambridge:MIT Press,2015:2017-2025. [23]CHU X,TIAN Z,WANG Y,et al.Twins:Revisiting the Design of Spatial Attention in Vision Transformers[C]//Conference and Workshop on Neural Information Processing Systems.Cambridge:MIT Press 2021:9355-9366. [24]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision(ECCV).Berlin:Springer Press,2018:3-19. [25]PARK J,WOO S,LEE J Y,et al.BAM:Bottleneck AttentionModule[C]//British Machine Vision Conference 2018.Newcastle:BMVA Press,2018:147-161. [26]SONG S,LICHTENBERG S P,XIAO J.SUN RGB-D:A RGBD Scene Understanding Benchmark Suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2015:567-576. [27]DAI A,CHANG A X,SAVVA M,et al.ScanNet:Richly-annotated 3D Reconstructions of Indoor Scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2017:5828-5839. [28]QI C R,LIU W,WU C,et al.Frustum PointNets for 3D Object Detection from RGB-D Data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2018:918-927. [29]MISRA I,GIRDHAR R,JOULIN A.An End-to-End Trans-former Model for 3D Object Detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.New York:IEEE Press,2021:2906-2917. [30]XIE Q,LAI Y K,WU J,et al.VENet:Voting EnhancementNetwork for 3D Object Detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.New York:IEEE Press,2021:3712-3721. [31]WANG Y,CHEN X,CAO L,et al.Multimodal Token Fusionfor Vision Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2022:12186-12195. [32]XIE Q,LAI Y K,WU J,et al.MLCVNet:Multi-Level Context VoteNet for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2020:10447-10456. [33]PAN X,XIA Z,SONG S,et al.3D Object Detection with Pointformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2021:7463-7472. [34]TAO B,YAN F W,YIN Z S,et al.3D Object Detection Based on High-precision Map Enhancement[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(3):802-809. |
[1] | LI Xiang, FAN Zhiguang, LIN Nan, CAO Yangjie, LI Xuexiang. Self-supervised Learning for 3D Real-scenes Question Answering [J]. Computer Science, 2023, 50(9): 220-226. |
[2] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[3] | MIAO Yongwei, SHAN Feng, DU Sicheng, WANG Jinrong, ZHANG Xudong. Object Region Guided 3D Target Detection in RGB-D Scenes [J]. Computer Science, 2023, 50(11A): 221200152-8. |
[4] | LI Zong-min, ZHANG Yu-peng, LIU Yu-jie, LI Hua. Deformable Graph Convolutional Networks Based Point Cloud Representation Learning [J]. Computer Science, 2022, 49(8): 273-278. |
[5] | CHE Ai-bo, ZHANG Hui, LI Chen, WANG Yao-nan. Single-stage 3D Object Detector in Traffic Environment Based on Point Cloud Data [J]. Computer Science, 2022, 49(11A): 210900079-6. |
[6] | SHEN Qi, CHEN Yi-lun, LIU Shu, LIU Li-gang. 3D Object Detection Algorithm Based on Two-stage Network [J]. Computer Science, 2020, 47(10): 145-150. |
[7] | HAO Wen, WANG Ying-hui, NING Xiao-juan, LIANG Wei and SHI Zheng-hao. Survey of 3D Object Recognition for Point Clouds [J]. Computer Science, 2017, 44(9): 11-16. |
[8] | QIU Chun-li and XU Hong-li. Direct Triangulation Algorithm for Three-dimensional Scattered Points [J]. Computer Science, 2014, 41(2): 157-160. |
|