Computer Science ›› 2024, Vol. 51 ›› Issue (6): 135-143.doi: 10.11896/jsjkx.230300194
• Database & Big Data & Data Science • Previous Articles Next Articles
WU Huinan1, XING Hongjie1, LI Gang2,3
CLC Number:
[1]CHANDOLA V,BANERJEE A,KUMAR V.Anomaly Detection:A Survey[J].ACM Computing Surveys,2009,41(3):1-58. [2]AGGARWAL C.An Introduction to Outlier Analysis[M]//Outlier Analysis.Cham:Springer,2017:1-34. [3]NEUSCHMIED H,WINTER M,HOFER-SCHMITZ K,et al.Two Stage Anomaly Detection for Network Intrusion Detection[C]//International Conference on Information Systems Security and Privacy.Online Streaming:SCITEPRESS,2021:450-457. [4]POURHABIBI T,ONG K L,KAM B H,et al.Fraud Detection:A Systematic Literature Review of Graph-Based Anomaly Detection Approaches[J].Decision Support Systems,2020,133:113303. [5]CHEN D,WANG P,YUE L,et al.Anomaly Detection in Surveillance Video Based on Bidirectional Prediction[J].Image and Vision Computing,2020,98:103915. [6]NAKAO T,HANAOKA S,NOMURA Y,et al.UnsupervisedDeep Anomaly Detection in Chest Radiographs[J].Journal of Digital Imaging,2021,34(2):418-427. [7]SCHÖLKOPF B,WILLIAMSON R C,SMOLA A,et al.Support Vector Method for Novelty Detection[C]//International Conference on Neural Information Processing Systems.Cambridge:MIT Press,1999:582-588. [8]PARZEN E.On Estimation of a Probability Density Functionand Mode[J].The Annals of Mathematical Statistics,1962,33(3):1065-1076. [9]TAX D M J,DUIN R P W.Support Vector Data Description[J].Machine Learning,2004,54(1):45-66. [10]HAWKINS S,HE H,WILLIAMS G,et al.Outlier DetectionUsing Replicator Neural Networks[C]//Data Warehousing and Knowledge Discovery.Berlin:Springer,2002:170-180. [11]AN J,CHO S.Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability[J].Special Lecture on IE,2015,2(1):1-18. [12]ERFANI S M,RAJASEGARAR S,KARUNASEKERA S,et al.High-Dimensional and Large-Scale Anomaly Detection Using a Linear One-Class SVM with Deep Learning[J].Pattern Recognition,2016,58:121-134. [13]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.DeepOne-Class Classification[C]//International Conference on Machine Learning.Stockholm:ACM,2018,4393-4402. [14]CHALAPATHY R,MENON A K,CHAWLA S.Anomaly Detection Using One-Class Neural Networks[J].arXiv:1802.06360,2018. [15]ZHANG Z,DENG X.Anomaly Detection Using Improved Deep SVDD Model with Data Structure Preservation[J].Pattern Re-cognition Letters,2021,148:1-6. [16]GHAFOORI Z,LECKIE C.Deep Multi-Sphere Support Vector Data Description[C]//SIAM International Conference on Data Mining.Cincinnati:SIAM,2020:109-117. [17]ZHOU Y,LIANG X,ZHANG W,et al.VAE-Based Deep SVDD for Anomaly Detection[J].Neurocomputing,2021,453:131-140. [18]HU T,GUO Q,SUN H,et al.Nontechnical Losses Detectionthrough Coordinated BiWGAN and SVDD[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(5),1866-1880. [19]WU D,DENG Y,LI M.FL-MGVN:Federated Learning forAnomaly Detection Using Mixed Gaussian Variational Self-Encoding Network[J].Information Processing & Management,2022,59(2):102839. [20]BISHOP C M.Pattern Recognition and Machine Learning[M].New York:springer,2006. [21]JIANG Z,ZHENG Y,TAN H,et al.Variational Deep Embedding:An Unsupervised and Generative Approach to Clustering[C]//International Joint Conference on Artificial Intelligence.Melbourne:Morgan Kaufmann,2017:1965-1972. [22]ZONG B,SONG Q,MIN M R,et al.Deep Autoencoding Gaus-sian Mixture Model for Unsupervised Anomaly Detection[C]//International Conference on Learning Representations.Vancouver:IEEE,2018:781-795. [23]YANG L,FAN W,BOUGUILA N.Clustering Analysis ViaDeep Generative Models with Mixture Models[J].IEEE Transac-tions on Neural Networks and Learning Systems,2022,33(1):340-350. [24]KINGMA D P,WELLING M.Auto-Encoding Variational Bayes[C]//International Conference on Learning Representations.Banff:IEEE,2014:1-5. [25]LLOYD S.Least Squares Quantization in PCM[J].IEEE Transac-tions on Information Theory,1982,28(2):129-137. [26]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//International Conference on Learning Representations.San Diego:IEEE,2015:1-15. [27]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-BasedLearning Applied to Document Recognition[J].IEEE,1998,86(11):2278-2324. [28]XIAO H,RASUL K,VOLLGRAF R.Fashion-mnist:A Novel Image Dataset for Benchmarking Machine Learning Algorithms[J].arXiv:1708.07747,2017. [29]KRIZHEVSKY A,HINTON G.Learning Multiple Layers ofFeatures from Tiny Images[J/OL].Handbook of Systemic Autoimmune Diseases,2009,1(4).https://scholar.google.com/scholar?hl=zhCN&as_sdt=0%2C5&q=Learning+multiple+layers+of+features+from+tiny+image&btnG=. [30]FAWCETT T.An Introduction to ROC Analysis[J].PatternRecognition Letters,2006,27(8):861-874. [31]LIU F T,TING K M,ZHOU Z H.Isolation Forest[C]//IEEE International Conference on Data Mining.Pisa:IEEE,2008:413-422. [32]MASCI J,MEIER U,CIRESAN D,et al.Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction[C]//International Conference on Artificial Neural Networks.Espoo:Springer,2011:52-59. [33]LI D,TAO Q,LIU J,et al.Center-Aware Adversarial Auto-encoder for Anomaly Detection[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(6):2480-2493. [34]YANG Z,ZHANG T,BOZCHALOOI I S,et al.Memory-Augmented Generative Adversarial Networks for Anomaly Detection[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(6):2324-2334. |
[1] | WU Nannan, GUO Zehao, ZHAO Yiming, YU Wei, SUN Ying, WANG Wenjun. Study on Anomalous Evolution Pattern on Temporal Networks [J]. Computer Science, 2024, 51(6): 118-127. |
[2] | LI Shasha, XING Hongjie. Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder [J]. Computer Science, 2024, 51(5): 363-373. |
[3] | ZHOU Wenhao, HU Hongtao, CHEN Xu, ZHAO Chunhui. Weakly Supervised Video Anomaly Detection Based on Dual Dynamic Memory Network [J]. Computer Science, 2024, 51(1): 243-251. |
[4] | LI Hui, LI Wengen, GUAN Jihong. Dually Encoded Semi-supervised Anomaly Detection [J]. Computer Science, 2023, 50(7): 53-59. |
[5] | HENG Hongjun, ZHOU Wenhua. Anomaly Detection Method Based on Context Information Fusion and Noise Adaptation [J]. Computer Science, 2023, 50(7): 237-245. |
[6] | SUN Kaiwei, WANG Zhihao, LIU Hu, RAN Xue. Maximum Overlap Single Target Tracking Algorithm Based on Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220400023-5. |
[7] | ZHANG Guohua, YAN Xuefeng, GUAN Donghai. Anomaly Detection of Time-series Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(6A): 220700094-7. |
[8] | SUN Xuekui, DAI Hua, ZHOU Jianguo, YANG Geng, CHEN Yanli. LTTFAD:Log Template Topic Feature-based Anomaly Detection [J]. Computer Science, 2023, 50(6): 313-321. |
[9] | ZHAO Song, FU Hao, WANG Hongxing. Pseudo-abnormal Sample Selection for Video Anomaly Detection [J]. Computer Science, 2023, 50(5): 146-154. |
[10] | ZHANG Renbin, ZUO Yicong, ZHOU Zelin, WANG Long, CUI Yuhang. Multimodal Generative Adversarial Networks Based Multivariate Time Series Anomaly Detection [J]. Computer Science, 2023, 50(5): 355-362. |
[11] | RAO Dan, SHI Hongwei. Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering [J]. Computer Science, 2023, 50(3): 121-128. |
[12] | CUI Jingsong, ZHANG Tongtong, GUO Chi, GUO Wenfei. Network Equipment Anomaly Detection Based on Time Delay Feature [J]. Computer Science, 2023, 50(3): 371-379. |
[13] | LI Shasha, XING Hongjie, LI Gang. Multi-temporal Hyperspectral Anomaly Change Detection Based on Dual Space Conjugate Autoencoder [J]. Computer Science, 2023, 50(12): 175-184. |
[14] | ZHANG Zouquan, ZHANG Hui, WU Tianyue, CHEN Tiancai. Continuous Dense Normalized Flow Model for Anomaly Detection in Industrial Images [J]. Computer Science, 2023, 50(12): 212-220. |
[15] | LIANG Lifang, GUAN Donghai, ZHANG Ji, YUAN Weiwei. Spatial-Temporal Attention Mechanism Based Anomaly Detection for Multivariate Times Series [J]. Computer Science, 2023, 50(11A): 230300022-8. |
|