Computer Science ›› 2023, Vol. 50 ›› Issue (6): 313-321.doi: 10.11896/jsjkx.220500020
• Computer Network • Previous Articles Next Articles
SUN Xuekui1, DAI Hua1,2, ZHOU Jianguo1, YANG Geng1,2, CHEN Yanli1
CLC Number:
[1]LIANG Y,ZHANG Y,XIONG H,et al.Failure prediction in ibm bluegene/l event logs[C]//Seventh IEEE International Conference on Data Mining(ICDM 2007).IEEE,2007:583-588. [2]WANG Y,WONG J,MINER A.Anomaly intrusion detectionusing one class SVM[C]//Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop,2004.IEEE,2004:358-364. [3]BREIER J,BRANIOVÁ J.Anomaly detection from log filesusing data mining techniques[M]//Information Science and Applications.Berlin:Springer,2015:449-457. [4]HE P,ZHU J,HE S,et al.Towards automated log parsing for large-scale log data analysis[J].IEEE Transactions on Dependable and Secure Computing,2017,15(6):931-944. [5]CHEN M,ZHENG A X,LLOYD J,et al.Failure diagnosis using decision trees[C]//International Conference on Autonomic Computing.IEEE,2004:36-43. [6]YING S,WANG B,WANG L,et al.An Improved KNN-Based Efficient Log Anomaly Detection Method with Automatically Labeled Samples[J].ACM Transactions on Knowledge Disco-very from Data(TKDD),2021,15(3):1-22. [7]XU W,HUANG L,FOX A,et al.Detecting large-scale system problems by mining console logs[C]//Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles.2009:117-132. [8]XU D,WANG Y,MENG Y,et al.An improved data anomaly detection method based on isolation forest[C]//2017 10th International Symposium on Computational Intelligence and Design(ISCID).IEEE,2017,2:287-291. [9]LOU J G,FU Q,YANG S,et al.Mining invariants from console logs for system problem detection[C]//2010 USENIX Annual Technical Conference(USENIX ATC 10).2010. [10]VAARANDI R,PIHELGAS M.Logcluster-a data clusteringand pattern mining algorithm for event logs[C]//2015 11th International Conference on Network and Service Management(CNSM).IEEE,2015:1-7. [11]DU M,LI F,ZHENG G,et al.Deeplog:Anomaly detection and diagnosis from system logs through deep learning[C]//Procee-dings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.2017:1285-1298. [12]MENG W,LIU Y,ZHU Y,et al.LogAnomaly:Unsuperviseddetection of sequential and quantitative anomalies in unstructured logs[C]//IJCAI.2019:4739-4745. [13]ZHANG X,XU Y,LIN Q,et al.Robust log-based anomaly detection on unstable log data[C]//Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Confe-rence and Symposium on the Foundations of Software Enginee-ring.2019:807-817. [14]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [15]CINQUE M,COTRONEO D,PECCHIA A.Event logs for the analysis of software failures:A rule-basedapproach[J].IEEE Transactions on Software Engineering,2012,39(6):806-821. [16]HANSEN S E,ATKINS E T.Automated System Monitoringand Notification with Swatch[C]//LISA.1993,93:145-152. [17]OPREA A,LI Z,YEN T F,et al.Detection of early-stage enterprise infection by mining large-scale log data[C]//2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.IEEE,2015:45-56. [18]PREWETT J E.Analyzing cluster log files using logsurfer[C]//Proceedings of the 4th Annual Conference on Linux Clusters.Citeseer,2003. [19]ROUILLARD J P.Real-time Log File Analysis Using the Simple Event Correlator(SEC)[C]//LISA.2004,4:133-150. [20]ROY S,KÖNIG A C,DVORKIN I,et al.Perfaugur:Robustdiagnostics for performance anomalies in cloud services[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE,2015:1167-1178. [21]YAMANISHI K,MARUYAMA Y.Dynamic syslog mining for network failure monitoring[C]//Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Disco-very in Data Mining.2005:499-508. [22]YEN T F,OPREA A,ONARLIOGLU K,et al.Beehive:Large-scale log analysis for detecting suspicious activity in enterprise networks[C]//Proceedings of the 29th Annual Computer Secu-rity Applications Conference.2013:199-208. [23]MAKANJU A A O,ZINCIR-HEYWOOD A N,MILIOS E E.Clustering event logs using iterative partitioning[C]//Procee-dings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2009:1255-1264. [24]TANG L,LI T,PERNG C S.LogSig:Generating system events from raw textual logs[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management.2011:785-794. [25]HAMOONI H,DEBNATH B,XU J,et al.Logmine:Fast pattern recognition for log analytics[C]//Proceedings of the 25th ACM International on Conference on Information and Know-ledge Management.2016:1573-1582. [26]DU M,LI F.Spell:Streaming parsing of system event logs[C]//2016 IEEE 16th International Conference on Data Mining(ICDM).IEEE,2016:859-864. [27]HE P,ZHU J,ZHENG Z,et al.Drain:An online log parsing approach with fixed depth tree[C]//2017 IEEE International Conference on Web Services(ICWS).IEEE,2017:33-40. [28]MESSAOUDI S,PANICHELLA A,BIANCULLI D,et al.Asearch-based approach for accurate identification of log message formats[C]//2018 IEEE/ACM 26th International Conference on Program Comprehension(ICPC).IEEE,2018:167-16710. [29]MIZUTANI M.Incremental mining of system log format[C]//2013 IEEE International Conference on Services Computing.IEEE,2013:595-602. [30]SHIMA K.Length matters:Clustering system log messagesusing length of words[J].arXiv:1611.03213,2016. [31]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of machine Learning research,2003,3(Jan):993-1022. [32]ZHU J,HE S,LIU J,et al.Tools and benchmarks for automated log parsing[C]//2019 IEEE/ACM 41st International Confe-rence on Software Engineering:Software Engineering in Practice(ICSE-SEIP).IEEE,2019:121-130. |
[1] | ZHANG Guohua, YAN Xuefeng, GUAN Donghai. Anomaly Detection of Time-series Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(6A): 220700094-7. |
[2] | YU Jiabao, YAO Junmei, XIE Ruitao, WU Kaishun, MA Junchao. Tag Identification for UHF RFID Systems Based on Deep Learning [J]. Computer Science, 2023, 50(6A): 220200151-6. |
[3] | HAN Junling, LI Bo, KANG Xiaodong, YANG Jingyi, LIU Hanqing, WANG Xiaotian. Cardiac MRI Image Segmentation Based on Faster R-CNN and U-net [J]. Computer Science, 2023, 50(6A): 220600047-9. |
[4] | LIU Haowei, YAO Jingchi, LIU Bo, BI Xiuli, XIAO Bin. Two-stage Method for Restoration of Heritage Images Based on Muti-scale Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220600129-8. |
[5] | SUN Kaiwei, WANG Zhihao, LIU Hu, RAN Xue. Maximum Overlap Single Target Tracking Algorithm Based on Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220400023-5. |
[6] | XIE Puxuan, CUI Jinrong, ZHAO Min. Electiric Bike Helment Wearing Detection Alogrithm Based on Improved YOLOv5 [J]. Computer Science, 2023, 50(6A): 220500005-6. |
[7] | WAN Haibo, JIANG Lei, WANG Xiao. Real-time Detection of Motorcycle Lanes Based on Deep Learning [J]. Computer Science, 2023, 50(6A): 220200066-5. |
[8] | WANG Xiaotian, LI Bo, KANG Xiaodong, LIU Hanqing, HAN Junling, YANG Jingyi. Study on Phased Target Detection in CT Image [J]. Computer Science, 2023, 50(6A): 220200063-10. |
[9] | GAO Xiang, TANG Jiqiang, ZHU Junwu, LIANG Mingxuan, LI Yang. Study on Named Entity Recognition Method Based on Knowledge Graph Enhancement [J]. Computer Science, 2023, 50(6A): 220700153-6. |
[10] | ZENG Wu, MAO Guojun. Few-shot Learning Method Based on Multi-graph Feature Aggregation [J]. Computer Science, 2023, 50(6A): 220400029-10. |
[11] | HOU Yanrong, LIU Ruixia, SHU Minglei, CHEN Changfang, SHAN Ke. Review of Research on Denoising Algorithms of ECG Signal [J]. Computer Science, 2023, 50(6A): 220300094-11. |
[12] | GU Yuhang, HAO Jie, CHEN Bing. Semi-supervised Semantic Segmentation for High-resolution Remote Sensing Images Based on DataFusion [J]. Computer Science, 2023, 50(6A): 220500001-6. |
[13] | ZHANG Jian, ZHANG Ye. College Students Employment Dynamic Prediction of Multi-feature Fusion Based on GRU-LSTM [J]. Computer Science, 2023, 50(6A): 220500056-6. |
[14] | LIANG Mingxuan, WANG Shi, ZHU Junwu, LI Yang, GAO Xiang, JIAO Zhixiang. Survey of Knowledge-enhanced Natural Language Generation Research [J]. Computer Science, 2023, 50(6A): 220200120-8. |
[15] | WANG Dongli, YANG Shan, OUYANG Wanli, LI Baopu, ZHOU Yan. Explainability of Artificial Intelligence:Development and Application [J]. Computer Science, 2023, 50(6A): 220600212-7. |
|