Computer Science ›› 2024, Vol. 51 ›› Issue (6): 391-398.doi: 10.11896/jsjkx.230400182
• Information Security • Previous Articles Next Articles
XU Yicheng, DAI Chaofan, MA Wubin, WU Yahui, ZHOU Haohao, LU Chenyang
CLC Number:
[1]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion-Efficient Learning of Deep Networks from Decentralized Data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [2]RODRÍGUEZ-BARROSO N,JIMÉNEZ-LÓPEZ D,LUZÓN M V,et al.Survey on Federated Learning Threats:concepts,taxo-nomy on attacks and defences,experimental study and challenges[J].Information Fusion,2023,90:148-173. [3]ALMANIFI O R A,CHOW C O,THAM M L,et al.Communication and computation efficiency in Federated Learning:A survey[J].Internet of Things,2023,22:100742. [4]MA X,ZHU J,LIN Z,et al.A state-of-the-art survey on solving non-IID data in Federated Learning[J].Future Generation Computer Systems,2022,135:244-258. [5]LI Z,SHARMA V,MOHANTY SP.Preserving Data Privacy via Federated Learning:Challenges and Solutions[J].IEEE Consumer Electronics Magazine,2020,9(3):8-16. [6]CHEN M,BEUTEL A,COVINGTON P,et al.Top-K Off-Policy Correction for a REINFORCE Recommender System[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining(WSDM ’19).2019:456-464. [7]NISHIO T,YONETANI R.Client Selection for FederatedLearning with Heterogeneous Resources in Mobile Edge[C]//2019 IEEE International Conference on Communications(ICC 2019).2019:1-7. [8]YUROCHKIN M,AGARWAL M,GHOSH S,et al.BayesianNonparametric Federated Learning of Neural Networks[J].arXiv:1905.12022,2019. [9]ZHAO Y,LI M,LAI L,et al.Federated Learning with Non-IID Data[J].arXiv:1806.00582,2018. [10]YOSHIDA N,NISHIO T,MORIKURA M,et al.Hybrid-FL for Wireless Networks:Cooperative Learning Mechanism Using Non-IID Data[C]//2020 IEEE International Conference on Communications(ICC 2020).2020:1-7. [11]TUOR T,WANG S,KO B J,et al.Overcoming Noisy and Irrele-vant Data in Federated Learning[C]//2020 25th International Conference on Pattern Recognition.2021:5020-5027. [12]WANG H,KAPLAN Z,NIU D,et al.Optimizing FederatedLearning on Non-IID Data with Reinforcement Learning[C]//IEEE Conference on Computer Communications(INFOCOM 2020).IEEE ,2020:1698-1707. [13]CAI L,LIN D,ZHANG J,et al.Dynamic Sample Selection for Federated Learning with Heterogeneous Data in Fog Computing[C]//2020 IEEE International Conference on Communications(ICC 2020).2020:1-6. [14]XU X,DUAN S,ZHANG J,et al.Optimizing Federated Lear-ning on Device Heterogeneity with A Sampling Strategy[C]//2021 IEEE/ACM 29th International Symposium on Quality of Service.2021:1-10. [15]POLI R,KENNEDY J,BLACKWELL T.Particle swarm optimization:An overview[J].Swarm Intelligence,2007,1(1):33-57. [16]SERIZAWA T,FUJITA H.Optimization of Convolutional Neural Network Using the Linearly Decreasing Weight Particle Swarm Optimization[J].arXiv:2001.05670,2020. [17]WANG B,XUE B,ZHANG M.Particle Swarm Optimisation for Evolving Deep Neural Networks for Image Classification by Evolving and Stacking Transferable Blocks[C]//2020 IEEE Congress on Evolutionary Computation.2020:1-8. [18]SYULISTYO A R,PURNOMO D M J,RACHMADI M F,et al.Particle Swarm Optimization(PSO) For Training Optimization on Convolutional Neural Network(CNN)[J].Jurnal Ilmu Komputer dan Informasi,2016,9(1):52-58. [19]QOLOMANY B,AHMAD K,AL-FUQAHA A,et al.ParticleSwarm Optimized Federated Learning For Industrial IoT and Smart City Services[C]//2020 IEEE Global Communications Conference(GLOBECOM 2020).2020:1-6. [20]PARK S,SUH Y,LEE J.FedPSO:Federated Learning UsingParticle Swarm Optimization to Reduce Communication Costs[J].Sensors,2021,21(2):600. [21]KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.1995,4:1942-1948. [22]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556,2014. [23]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[J].arXiv:1704.04861,2017. [24]JEONG E,OH S,KIM H,et al.Communication-Efficient On-Device Machine Learning:Federated Distillation and Augmentation under Non-IID Private Data[J].arXiv:1811.11479,2018. [25]YAO X,HUANG T,ZHANG R X,et al.Federated Learningwith Unbiased Gradient Aggregation and Controllable Meta Updating[J].arXiv:1910.08234,2020. [26]DENG L.The MNIST Database of Handwritten Digit Images for Machine Learning Research[Best of the Web][J].IEEE Signal Processing Magazine,2012,29(6):141-142. [27]HAN X,RASUL K,VOLLGRAF R.Fashion-MNIST:a Novel Image Dataset for Benchmarking Machine Learning Algorithms[J].arXiv:1708.07747,2017. [28] KRIZHEVSKYA.Learning multiple layers of features from tiny images[J].Handbook of Systemic Autoimmune Diseases,2009,1(4):1-60. |
[1] | LIU Jianxun, ZHANG Xinglin. Federated Learning Client Selection Scheme Based on Time-varying Computing Resources [J]. Computer Science, 2024, 51(6): 354-363. |
[2] | LU Yanfeng, WU Tao, LIU Chunsheng, YAN Kang, QU Yuben. Survey of UAV-assisted Energy-Efficient Edge Federated Learning [J]. Computer Science, 2024, 51(4): 270-279. |
[3] | WANG Degang, SUN Yi, GAO Qi. Active Membership Inference Attack Method Based on Multiple Redundant Neurons [J]. Computer Science, 2024, 51(4): 373-380. |
[4] | WANG Xin, HUANG Weikou, SUN Lingyun. Survey of Incentive Mechanism for Cross-silo Federated Learning [J]. Computer Science, 2024, 51(3): 20-29. |
[5] | HUANG Nan, LI Dongdong, YAO Jia, WANG Zhe. Decentralized Federated Continual Learning Method Combined with Meta-learning [J]. Computer Science, 2024, 51(3): 271-279. |
[6] | WANG Dong, LI Zheng, XIAO Bingbing. Blockchain Coin Mixing Scheme Based on Homomorphic Encryption [J]. Computer Science, 2024, 51(3): 335-339. |
[7] | YOU Feifu, CAI Jianping, SUN Lan. Census Associated Multiple Attributes Data Release Based on Differential Privacy [J]. Computer Science, 2024, 51(3): 368-377. |
[8] | WANG Xun, XU Fangmin, ZHAO Chenglin, LIU Hongfu. Defense Method Against Backdoor Attack in Federated Learning for Industrial Scenarios [J]. Computer Science, 2024, 51(1): 335-344. |
[9] | WANG Zhousheng, YANG Geng, DAI Hua. Lightweight Differential Privacy Federated Learning Based on Gradient Dropout [J]. Computer Science, 2024, 51(1): 345-354. |
[10] | ZHONG Yue, GU Jieming, CAO Honglin. Survey of Lightweight Block Cipher [J]. Computer Science, 2023, 50(9): 3-15. |
[11] | ZHAO Yuhao, CHEN Siguang, SU Jian. Privacy-enhanced Federated Learning Algorithm Against Inference Attack [J]. Computer Science, 2023, 50(9): 62-67. |
[12] | LIN Xinyu, YAO Zewei, HU Shengxi, CHEN Zheyi, CHEN Xing. Task Offloading Algorithm Based on Federated Deep Reinforcement Learning for Internet of Vehicles [J]. Computer Science, 2023, 50(9): 347-356. |
[13] | LU Xingyuan, CHEN Jingwei, FENG Yong, WU Wenyuan. Privacy-preserving Data Classification Protocol Based on Homomorphic Encryption [J]. Computer Science, 2023, 50(8): 321-332. |
[14] | LI Rongchang, ZHENG Haibin, ZHAO Wenhong, CHEN Jinyin. Data Reconstruction Attack for Vertical Graph Federated Learning [J]. Computer Science, 2023, 50(7): 332-338. |
[15] | ZHANG Lianfu, TAN Zuowen. Robust Federated Learning Algorithm Based on Adaptive Weighting [J]. Computer Science, 2023, 50(6A): 230200188-9. |
|