Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230500203-7.doi: 10.11896/jsjkx.230500203
• Artificial Intelligenc • Previous Articles Next Articles
YIN Baosheng, ZHOU Peng
CLC Number:
[1]LIN H,LU Y,TANG J,et al.A Rigorous Study on Named Entity Recognition:Can Fine-tuning Pretrained Model Lead to the Promised Land?[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:7291-7300. [2]LEE J,YOON W,KIM S,et al.BioBERT:a pre-trained biome-dical language representation model for biome-dical text mining[J].Bioinformatics,2019,36(4):1234-1240. [3]MI F,ZHOU W,CAI F,et al.Self-training improves pre-trai-ning for few-shot learning in task-oriented dialog systems[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing(EMNLP).2021:1887-1898. [4]HA S,KERSNER M,KIM B,et al.Marionette:Few-shot facereenactment preserving identity of unseen targets[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:10893-10900. [5]WANG Y,YAO Q,KWOK J T,et al.Generalizing from a Few Examples:A Survey on Few-shot Learning[J].ACM computing surveys(csur),2020,53(3):1-34. [6]LIUH,TAM D,MUQEETH M,et al.Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning[J].Advances in Neural Information Processing Systems,2022,35:1950-1965. [7]OSAHOR U,NASRABADI N M.Ortho-shot:low displacement rank regularization with data augmentation for few-shot learning[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:2200-2209. [8]SUN Q,LIU Y,CHUA T S,et al.Meta-Transfer Learning for Few-Shot Learning[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition(CVPR).2019:403-412. [9]LUO X,XU J,XU Z.Channel importance matters in few-shotimage classification[J].In International Conference on Machine Learning(PMLR),2022,162:14542-14559. [10]DIXIT M,KWITT R,NIETHAMMER M,et al.AGA:Attri-bute-Guided Augmentation[J].Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition,2017,35:7455-7463. [11]SCHWARTZ E,KARLINSKY L,SHTOK J,et al.Delta-en-coder:an effective sample synthesis method for few-shot object recognition[J].Advances in neural information processing systems,2018,31:2850-2860. [12]CHEN J,LIU Q,LIN H,et al.Few-shot named entity recognition with self-describing networks[J].arXiv:2203.12252,2022. [13]LAI P,YE F,ZHANG L,et al.PCBERT:Parent and ChildBERT for Chinese Few-shot NER[C]//Proceedings of the 29th International Conference on Computational Linguistics.2022:2199-2209. [14]MA T,JIANG H,WU Q,et al.Decomposed Meta-Learning for Few-Shot Named Entity Recognition[J].arXiv:2204.05751,2022. [15]WANG J,WANG C,TAN C,et al.SpanProto:A Two-stageSpan-based Prototypical Network for Few-shot Named Entity Recognition[C]//Proceedings of the 2022 Conference on Empi-rical Methods in Natural Language Processing.2022:3466-3476. [16]LI J,CHIU B,FENG S,et al.Few-shot named entity recognition via meta-learning[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(9):4245-4256. [17]MA J,BALLESTEROS M,DOSS S,et al.Label semantics for few shot named entity recognition[J].arXiv:2203.08985,2022. [18]FRITZLER A,LOGACHEVA V,KRETOV M.Few-shot classification in named entity recognition task[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.2019:993-1000. [19]LI J,SUN A,HAN J,LI C.A survey on deep learning for named entity recognition[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(1):50-70. [20]CHURCH K W.Word2Vec[J].Natural Language Engineering,2017,23(1):155-162. [21]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing(EMNLP),2014:1532-1543. [22]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics(NAACL),2019,21:4171-4186. [23]LU W,LI J,WANG J,et al.A CNN-BiLSTM-AM method forstock price prediction[J].Neural Computing and Applications,2021,33:4741-4753. [24]LAFFERTY J,MCCALLUM A,PEREIRA F.Conditional random fields:probabillstic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Confe-rence on Machine Learning.2001:282-289. [25]ZAN H Y,LI W X,ZHANG K L,et al.Building a PediatricMedical Corpus:Word Segmentation and Named Entity Annotation[C]//The 21st Chinese Lexical Semantics Workshop.2021:652-664. [26]LU Y,LIU Q,DAI D,et al.Unified structure generation for universal information extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(ACL).2022:5755-5772. [27]LI Y,LIU L,SHI S.Empirical analysis of unlabeled entity pro-blem in named entity recognition[J].arXiv:2012.05426,2020. [28]FU Y,LIN N,YANG Z,et al.Towards Malay named entity re-cognition:an open-source dataset and a multi-task framework[J].Connection Science,2023:35(1):2159014. [29]LI X,FENG J,MENG Y,et al.A unified MRC framework fornamed entity recognition[J].arXiv:1910.11476,2019. |
[1] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[2] | LI Fan, JIA Dongli, YAO Yumin, TU Jun. Graph Neural Network Few Shot Image Classification Network Based on Residual and Self-attention Mechanism [J]. Computer Science, 2023, 50(6A): 220500104-5. |
[3] | DONG Zhen-heng, REN Wei-ping, YOU Xin-dong, LYU Xue-qiang. Machine Translation Method Integrating New Energy Terminology Knowledge [J]. Computer Science, 2022, 49(6): 305-312. |
[4] | LIU Xin, YUAN Jia-bin, WANG Tian-xing. Interior Human Action Recognition Method Based on Prior Knowledge of Scene [J]. Computer Science, 2022, 49(1): 225-232. |
[5] | TIAN Zhen-kun, FU Ying-ying, LIU Su-hong. Remote Sensing Image Classification Based on Heterogeneous Machine Learning Algorithm Fusion [J]. Computer Science, 2019, 46(5): 235-240. |
[6] | ZHAO Jia-min,FENG Ai-min,CHEN Song-can and PAN Zhi-song. Maximum Constrained Density One-class Classifier [J]. Computer Science, 2014, 41(2): 59-63. |
[7] | YU Xu,YANG Jing,XIE Zhi-qiang. Research on Virtual Sample Generation Technology [J]. Computer Science, 2011, 38(3): 16-19. |
[8] | LI Lin-na,CHEN Hai-rui,WANG Ying-long. Semi-supervised Clustering of Complex Structured Data Based on Higher-order Logic [J]. Computer Science, 2009, 36(9): 196-200. |
|