Computer Science ›› 2024, Vol. 51 ›› Issue (9): 242-249.doi: 10.11896/jsjkx.230600117
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Tianzhi1, ZHOU Gang1,2, LIU Hongbo1, LIU Shuo1, CHEN Jing1
CLC Number:
[1]CHEEMA G S,HAKIMOV S,MÜLLER-BUDACK E,et al.A fair and comprehensive comparison of multimodal tweet sentiment analysis methods[C]//Proceedings of the 2021 Workshop on Multi-Modal Pre-Training for Multimedia Understanding.2021:37-45. [2]YUAN J L,DING Y Y,SHENG D M,et al.Image-Text Sentiment Analysis Model Based on Visual Aspect Attention[J].Computer Science,2022,49(1):219-224. [3]XU N,MAO W,CHEN G.Multi-interactive memory networkfor aspect based multimodal sentiment analysis[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2019:371-378. [4]YU J,JIANG J,XIA R.Entity-Sensitive Attention and Fusion Network for Entity-Level Multimodal Sentiment Classification[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2020,28:429-439. [5]YU J,JIANG J.Adapting BERT for target-oriented multimodal sentiment classification[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.2019:5408-5414. [6]WANG J,LIU Z,SHENG V,et al.Saliencybert:Recurrent at-tention network for target-oriented multimodal sentiment classification[C]//Pattern Recognition and Computer Vision:4th Chinese Conference,PRCV 2021,Beijing,China,October 29,November 1,2021,Proceedings,Part III 4.Springer International Publishing,2021:3-15. [7]BORTH D,JI R,CHEN T,et al.Large-scale visual sentimentontology and detectors using adjective noun pairs[C]//Procee-dings of the 21st ACM International Conference on Multimedia.2013:223-232. [8]PORIA S,HAZARIKA D,MAJUMDER N,et al.Beneath thetip of the iceberg:Current challenges and new directions in sentiment analysis research[J].IEEE Transactions on Affective Computing,2020,14:108-132. [9]PORIA S,CAMBRIA E,HAZARIKA D,et al.Context-depen-dent sentiment analysis in user-generated videos[C]//Procee-dings of the 55th Annual Meeting of the Association for Computational Linguistics(volume 1:Long papers).2017:873-883. [10]LIANG P P,LIU Z,ZADEH A,et al.Multimodal LanguageAnalysis with Recurrent Multistage Fusion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:150-161. [11]BUSSO C,DENG Z,YILDIRIM S,et al.Analysis of emotionrecognition using facial expressions,speech and multimodal information[C]//Proceedings of the 6th International Conference on Multimodal Interfaces.2004:205-211. [12]LEE C C,MOWER E,BUSSO C,et al.Emotion recognitionusing a hierarchical binary decision tree approach[J].Speech Communication,2011,53(9/10):1162-1171. [13]CASTRO S,HAZARIKA D,PÉREZ-ROSAS V,et al.Towards Multimodal Sarcasm Detection(An _Obviously_ Perfect Paper)[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:4619-4629. [14]CAI Y,CAI H,WAN X.Multi-modal sarcasm detection in twit-ter with hierarchical fusion model[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:2506-2515. [15]YANG J,SHE D,SUN M,et al.Visual sentiment predictionbased on automatic discovery of affective regions[J].IEEE Transactions on Multimedia,2018,20(9):2513-2525. [16]YANG J,SHE D,LAI Y K,et al.Weakly supervised coupled networks for visual sentiment analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7584-7592. [17]KUMAR A,GARG G.Sentiment analysis of multimodal twitter data[J].Multimedia Tools and Applications,2019,78:24103-24119. [18]KUMAR A,SRINIVASAN K,CHENG W H,et al.Hybrid con-text enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data[J].Information Processing & Management,2020,57(1):102141. [19]ZHANG L,WANG S,LIU B.Deep learning for sentiment ana-lysis:A survey[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2018,8(4):e1253. [20]PONTIKI M,GALANIS D,PAPAGEORGIOU H,et al.Semeval-2016 task 5:Aspect based sentiment analysis[C]//ProWorkshop on Semantic Evaluation(SemEval-2016).Association for Computational Linguistics,2016:19-30. [21]DONG L,WEI F,TAN C,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(volume 2:Short papers).2014:49-54. [22]XUE W,LI T.Aspect Based Sentiment Analysis with GatedConvolutional Networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Vo-lume 1:Long Papers).2018:2514-2523. [23]MA Y,PENG H,CAMBRIA E.Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:5876-5883. [24]MEKELČ D,FRASINCAR F.ALDONAr:A hybrid solutionfor sentence-level aspect-based sentiment analysis using a lexicalized domain ontology and a regularized neural attention mo-del[J].Information Processing & Management,2020,57(3):102211. [25]ZHAO L,LIU Y,ZHANG M,et al.Modeling label-wise syntax for fine-grained sentiment analysis of reviews via memory-based neural model[J].Information Processing & Management,2021,58(5):102641. [26]WANG K,SHEN W,YANG Y,et al.Relational Graph Atten-tion Network for Aspect-based Sentiment Analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3229-3238. [27]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in NaturalLanguage Processing(EMNLP).2020:3540-3549. [28]XU H,LIU B,SHU L,et al.BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:2324-2335. [29]SUN C,HUANG L,QIU X.Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence[C]//Proceedings of NAACL-HLT.2019:380-385. [30]KHAN Z,FU Y.Exploiting BERT for multimodal target sentiment classification through input space translation[C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:3034-3042. [31]LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mized bert pretraining approach[J].arXiv:1907.11692,2019. [32]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding [C]//Proceedings of NAACL-HLT.2019:4171-4186. [33]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [34]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [35]CHEN T,BORTH D,DARRELL T,et al.Deepsentibank:Vi-sual sentiment concept classification with deep convolutional neural networks[J].arXiv:1410.8586,2014. [36]ZHAO F,WU Z,LONG S,et al.Learning from Adjective-Noun Pairs:A Knowledge-enhanced Framework for Target-Oriented Multimodal Sentiment Classification[C]//Proceedings of the 29th International Conference on Computational Linguistics.2022:6784-6794. [37]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTMfor aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615. [38]FAN F,FENG Y,ZHAO D.Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:3433-3442. |
[1] | YU Bihui, TAN Shuyue, WEI Jingxuan, SUN Linzhuang, BU Liping, ZHAO Yiman. Vision-enhanced Multimodal Named Entity Recognition Based on Contrastive Learning [J]. Computer Science, 2024, 51(6): 198-205. |
[2] | ZHOU Xiao-shi, ZHANG Zi-wei, WEN Juan. Natural Language Steganography Based on Neural Machine Translation [J]. Computer Science, 2021, 48(11A): 557-564. |
[3] | . Relevance Feedback Algorithm Based on Fuzzy Semantic Relevance Matrix in Image Retrieval [J]. Computer Science, 2012, 39(Z6): 540-542. |
|