Computer Science ›› 2024, Vol. 51 ›› Issue (9): 250-257.doi: 10.11896/jsjkx.230600047
• Artificial Intelligence • Previous Articles Next Articles
MO Shuyuan, MENG Zuqiang
CLC Number:
[1]YUE L,CHEN W,LI X,et al.A survey of sentiment analysis in social media [J].Knowledge and Information Systems,2019,60:617-663. [2]GAO Y,ZHEN Y,LI H,et al.Filtering of brand-related micro-blogs using social-smooth multiview embedding [J].IEEE Tran-sactions on Multimedia,2016,18(10):2115-2126. [3]PANG L,ZHU S,NGO C W.Deep multimodal learning for affective analysis and retrieval [J].IEEE Transactions on Multimedia,2015,17(11):2008-2020. [4]CAMBRIA E,SCHULLER B,XIA Y,et al.New avenues inopinion mining and sentiment analysis [J].IEEE Intelligent Systems,2013,28(2):15-21. [5]GUO W,ZHANG Y,CAI X,et al.LD-MAN:Layout-drivenmultimodal attention network for online news sentiment recognition [J].IEEE Transactions on Multimedia,2020,23:1785-1798. [6]ZHU T,LI L,YANG J,et al.Multimodal sentiment analysiswith image-text interaction network [J].IEEE Transactions on Multi-media,2023,40(1):1-27. [7]KHAN Z,FU Y.Exploiting BERT for multimodal target sentiment classification through input space translation [C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:3034-3042. [8]MACHAJDIK J,HANBURY A.Affective image classificationusing features inspired by psychology and art theory [C]//Proceedings of the 18th ACM International Conference on Multi-media.2010:83-92. [9]ZHAO S,GAO Y,JIANG X,et al.Exploring principles-of-art features for image emotion recognition [C]//Proceedings of the 22nd ACM International Conference on Multimedia.2014:47-56. [10]BORTH D,JI R,CHEN T,et al.Large-scale visual sentimentontology and detectors using adjective noun pairs [C]//Procee-dings of the 21st ACM International Conference on Multi-media.2013:223-232. [11]LI Z,FAN Y,LIU W,et al.Image sentiment prediction based on textual descriptions with adjective noun pairs [J].Multimedia Tools and Applications,2018,77:1115-1132. [12]ZHAO S,YAO H,YANG Y,et al.Affective image retrieval via multi-graph learning [C]//Proceedings of the 22nd ACM International Conference on Multimedia.2014:1025-1028. [13]YOU Q,JIN H,LUO J.Visual sentiment analysis by attending on local image regions [C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2017. [14]SHE D,YANG J,CHENG M M,et al.Wscnet:Weakly supervised coupled networks for visual sentiment classification and detection [J].IEEE Transactions on Multimedia,2019,22(5):1358-1371. [15]ZHANG J,LIU X,CHEN M,et al.Image sentiment classification via multi-level sentiment region correlation analysis [J].Neurocomputing,2022,469:221-233. [16]YANG J,LI J,WANG X,et al.Stimuli-aware visual emotion analysis [J].IEEE Transactions on Image Processing,2021,30:7432-7445. [17]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training ofdeep bidirectional transformers for language understanding [J].arXiv:1810.04805,2018. [18]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners [J].OpenAI blog,2019,1(8):9. [19]JIANG Z,XU F F,ARAKI J,et al.How can we know what language models know? [J].Transactions of the Association for Computational Linguistics,2020,8:423-438. [20]SHIN T,RAZEGHI Y,LOGAN IV R L,et al.Autoprompt:Eliciting knowledge from language models with automatically generated prompts [J].arXiv:2010.15980,2020. [21]ZHANG R,GUO Z,ZHANG W,et al.Pointclip:Point cloud understanding by clip [C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2022:8552-8562. [22]ZHOU K,YANG J,LOY C C,et al.Learning to prompt for vision-language models [J].International Journal of Computer Vision,2022,130(9):2337-2348. [23]ZHOU K,YANG J,LOY C C,et al.Conditional prompt learning for vision-language models [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:16816-16825. [24]WU H,SHI X.Adversarial soft prompt tuning for cross-domain sentiment analysis [C]//Proceedings of the 60th Annual Mee-ting of the Association for Computational Linguistics(Volume 1:Long Papers).2022:2438-2447. [25]KAUR R,KAUTISH S.Multimodal sentiment analysis:A survey and comparison [J].International Journal of Service Science Management Engineering & Technology,2019,10(2):38-58. [26]SOLEYMANI M,GARCIA D,JOU B,et al.A survey of multimodal sentiment analysis [J].Image and Vision Computing,2017,65:3-14. [27]MORENCY L P,MIHALCEA R,DOSHI P.Towards multimodal sentiment analysis:Harvesting opinions from the web [C]//Proceedings of the 13th International Conference on Multimodal Interfaces.2011:169-176. [28]ZADEH A A B,LIANG P P,PORIA S,et al.Multimodal language analysis in the wild:Cmu-mosei dataset and interpretable dynamic fusion graph [C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Vo-lume 1:Long Papers).2018:2236-2246. [29]STAPPEN L,SCHUMANN L,SERTOLLI B,et al.Muse-toolbox:The multimodal sentiment analysis continuous annotation fusion and discrete class transformation toolbox [C]//Procee-dings of the 2nd on Multimodal Sentiment Analysis Challenge.2021:75-82. [30]LIANG C,XU J,ZHAO J,et al.Deep Learning-based Con-struction and Processing of Multimodal Corpus for IoT Devices in Mobile Edge Computing[J].Computational Intelligence and Neuroscience,2022,2022(1):2241310. [31]NIU T,ZHU S,PANG L,et al.Sentiment analysis on multi-view social data [C]//22nd International Conference Multi-Media Modeling(MMM 2016),Miami,FL,USA,Part II 22.Springer International Publishing,2016:15-27. [32]YU J,JIANG J.Adapting BERT for target-oriented multimodal sentiment classification [C]//IJCAI,2019. [33]XU N,MAO W.Multisentinet:A deep semantic network formultimodal sentiment analysis [C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2017:2399-2402. [34]XU N,MAO W,CHEN G.A co-memory network for Multimodal sentiment analysis [C]//The 41st international ACM SIGIR Conference on Research & Development in Information Retrie-val.2018:929-932. [35]CAI G,XIA B.Convolutional neural networks for multimedia sentiment analysis [C]//4th CCF Conference Natural Language Processing and Chinese Computing(NLPCC 2015).Nanchang,China:Springer International Publishing,2015:159-167. [36]CHOCHLAKIS G,SRINIVASAN T,THOMASON J,et al.VAuLT:Augmenting the Vision-and-Language Transformer with the Propagation of Deep Language Representations [J].arXiv:2208.09021,2022. [37]KIM W,SON B,KIM I.Vilt:Vision-and-language transformer without convolution or region supervision [C]//International Conference on Machine Learning.PMLR,2021:5583-5594. [38]LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mized bert pretraining approach [J].arXiv:1907.11692,2019. [39]LI J,SELVARAJU R,GOTMARE A,et al.Align before fuse:Vision and language representation learning with momentum distillation [J].Advances in Neural Information Processing Systems,2021,34:9694-9705. [40]YE J,ZHOU J,TIAN J,et al.Sentiment-aware multimodal pre-training for multimodal sentiment analysis [J].Knowledge-Based Systems,2022,258:110021. [41]VAN DER MAATEN L,HINTON G.Visualizing data using t-SNE [J].Journal of Machine Learning Research,2008,9(11):2579-2605. [42]CHEFER H,GUR S,WOLF L.Transformer interpretability beyond attention visualization [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:782-791. |
[1] | DAI Chaofan, DING Huahua. Domain-adaptive Entity Resolution Algorithm Based on Semi-supervised Learning [J]. Computer Science, 2024, 51(9): 214-222. |
[2] | ZHANG Tianzhi, ZHOU Gang, LIU Hongbo, LIU Shuo, CHEN Jing. Text-Image Gated Fusion Mechanism for Multimodal Aspect-based Sentiment Analysis [J]. Computer Science, 2024, 51(9): 242-249. |
[3] | LU Xulin, LI Zhihua. IoT Device Recognition Method Combining Multimodal IoT Device Fingerprint and Ensemble Learning [J]. Computer Science, 2024, 51(9): 371-382. |
[4] | WANG Chao, TANG Chao, WANG Wenjian, ZHANG Jing. Infrared Human Action Recognition Method Based on Multimodal Attention Network [J]. Computer Science, 2024, 51(8): 232-241. |
[5] | YAN Qiuyan, SUN Hao, SI Yuqing, YUAN Guan. Multimodality and Forgetting Mechanisms Model for Knowledge Tracing [J]. Computer Science, 2024, 51(7): 133-139. |
[6] | YANG Binxia, LUO Xudong, SUN Kaili. Recent Progress on Machine Translation Based on Pre-trained Language Models [J]. Computer Science, 2024, 51(6A): 230700112-8. |
[7] | WANG Yifan, ZHANG Xuefang. Modality Fusion Strategy Research Based on Multimodal Video Classification Task [J]. Computer Science, 2024, 51(6A): 230300212-5. |
[8] | JIANG Haoda, ZHAO Chunlei, CHEN Han, WANG Chundong. Construction Method of Domain Sentiment Lexicon Based on Improved TF-IDF and BERT [J]. Computer Science, 2024, 51(6A): 230800011-9. |
[9] | BAI Yu, WANG Xinzhe. Study on Hypernymy Recognition Based on Combined Training of Attention Mechanism and Prompt Learning [J]. Computer Science, 2024, 51(6A): 230700226-5. |
[10] | YU Bihui, TAN Shuyue, WEI Jingxuan, SUN Linzhuang, BU Liping, ZHAO Yiman. Vision-enhanced Multimodal Named Entity Recognition Based on Contrastive Learning [J]. Computer Science, 2024, 51(6): 198-205. |
[11] | ZHANG Haoyan, DUAN Liguo, WANG Qinchen, GAO Hao. Long Text Multi-entity Sentiment Analysis Based on Multi-task Joint Training [J]. Computer Science, 2024, 51(6): 309-316. |
[12] | XU Yiran, ZHOU Yu. Prompt Learning Based Parameter-efficient Code Generation [J]. Computer Science, 2024, 51(6): 61-67. |
[13] | LIU Jun, RUAN Tong, ZHANG Huanhuan. Prompt Learning-based Generative Approach Towards Medical Dialogue Understanding [J]. Computer Science, 2024, 51(5): 258-266. |
[14] | ZHANG Zebao, YU Hannan, WANG Yong, PAN Haiwei. Combining Syntactic Enhancement with Graph Attention Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2024, 51(5): 200-207. |
[15] | DUAN Yuxiao, HU Yanli, GUO Hao, TAN Zhen, XIAO Weidong. Study on Improved Fake Information Detection Method Based on Cross-modal CorrelationAmbiguity Learning [J]. Computer Science, 2024, 51(4): 307-313. |
|