Computer Science ›› 2024, Vol. 51 ›› Issue (6): 144-152.doi: 10.11896/jsjkx.230700115
• Database & Big Data & Data Science • Previous Articles Next Articles
JIANG Gaoxia1, WANG Fei1, XU Hang1, WANG Wenjian1,2
CLC Number:
[1]HAN B,TSANG I W,CHEN L,et al.Beyond majority voting:a coarse-to-fine label filtration for heavily noisy labels[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(12):3774-3787. [2]SLUBAN B,GAMBERGER D,LAVRAC N.Ensemble-basednoise detection:noise ranking and visual performance evaluation[J].Data Mining and Knowledge Discovery,2014,28(2):265-303. [3]SHANAB A A,KHOSHGOFTAAR T M,WALD R.Robust-ness of threshold-based feature rankers with data sampling on noisy and imbalanced data[C]//International Conference on Florida Artificial Intelligence Research Society.Marco Island,Florida:AAAI Press,2012. [4]DOYLE O M,WESTMAN E,MARQUAND A F,et al.Predicting progression of Alzheimer’s disease using ordinal regression[J].Plos One,2014,9(8):e105542. [5]CHANG K Y,CHEN C S,HUNG Y P.Ordinal hyperplanes ranker with cost sensitivities for age estimation[C]//International Conference on Computer Vision Pattern Recognition.Piscataway,NJ:IEEE,2011:585-592. [6]FERNANDEZ-NAVARRO F,CAMPOY-MU NOZ P,et al.Addressing the EU sovereign ratings using an ordinal regression approach[J].IEEE Transactions on Cybernetics,2013,43(6):2228-2240. [7]GUTIERREZ P A,PEREZ-ORTIZ M,SANCHEZ-MONEDE-RO J,et al.Ordinal regression methods:survey and experimental study[J].IEEE Transactions on Knowledge and Data Enginee-ring,2015,28(1):127-146. [8]MA W J,DONG H B.Face age classification method based on ensemble learning of convolutional Neural Networks[J].Computer Science,2018,45(1):152-156. [9]AGRESTI A.Analysis of ordinal categorical data with misclassification[J].British Journal of Mathematical and Statistical Psychology,2011,27(391):317-318. [10]XU H,WANG W J,QIAN Y H.Fusing complete monotonic decision trees[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(10):2223-2235. [11]KORDOS M,BIALKA S,BLACHNIK M.Instance selection in logical rule extraction for regression problems[C]//Interna-tional Conference on Artificial Intelligence and Soft Computing.Berlin:Springer,2013:167-175. [12]ARNAIZ-GONZALEZ A,DIEZ-PASTOR J F,RODRÍGUZE J J,et al.Instance selection for regression by discretization[J].Expert Systems with Applications,2016,54:340-350. [13]BRODLEY C E,FRIEDL M A.Identifying mislabeled training data[J].Journal of Artificial Intelligence Research,1999,11:131-167. [14]KHOSHGOFTAAR T M,REBOURS P.Improving softwarequality prediction by noise filtering techniques[J].Journal of Computer Science and Technology,2007,22(3):387-396. [15]SLUBAN B,GAMBERGER D,LAVRA N.Advances in class noise detection[C]//European Conference on Artificial Intelligence.Netherlands:IOS Press,2010:1105-1106. [16]SAEZ J A,GALAR M,LUENGO J,et al.INFFC:An iterative class noise filter based on the fusion of classifiers with noise sensitivity control[J].Information Fusion,2016,27:19-32. [17]JIANG G X,WANG W J,QIAN Y H,et al.A unified sample selection framework for output noise filtering:an error-bound perspective[J].Journal of Machine Learning Research,2021,22(8):1-66. [18]JIANG G X,WANG W J.A Numerical Label noise filtering algorithm for regression task[J].Journal of Computer Research and Development,2022,59(8):1639-1652. [19]ZHANG Z H,JIANG G X,WANG W J.Label noise filtering method based on local probability sampling[J].Journal of Computer Applications,2019,41(1):67-73. [20]ZHANG Z H,JIANG G X,WANG W J.Label noise filteringmethod based on dynamic probability sampling[J].Journal of Computer Applications,2021,41(12):3485-3491. [21]XIA S Y,ZHENG S Y,WANG G Y,et al.Granular ball sampling for noisy label classification or imbalanced classification[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(4):2144-2155. [22]LI Y,HAN H,SHAN S,et al.DISC:Learning from noisy labels via dynamic instance-specific selection and correction[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2023:24070-24079. [23]WEI Q,SUN H,LU X,et al.Self-filtering:a noise-aware sample selection for label noise with confidence penalization[C]//European Conference on Computer Vision.Cham:Springer,2022:516-532. [24]JIANG G X,QIN P,WANG W J.Noise Estimation and Filtering Methods with Limit Distance[J].Computer Science,2023,50(6):151-158. [25]LI C,MAO Z Z.A label noise filtering method for regression based on adaptive threshold and noise score[J].Expert Systems with Applications,2023,228,120422. [26]CHERKASSKY V,MA Y Q.Comparison of model selection for regression[J].Neural Computation,2003,15(7):1691-1714. [27]CHU W,GHAHRAMANI Z,et al.Gaussian processes for ordinal regression[J].The Journal of Machine Research,2004,6(3):1019-1041. [28]ASUNCION A,NEWMAN D.UCI machine learning repository[DB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html. [29]PASCAL:Pascal(Pattern Analysis,Statistical Modelling andComputational Learning) machine learning benchmarks repository[DB/OL].http://mldata.org/. [30]ERAN E,ROEE E,TAL H.Age and gender estimation of unfiltered faces[J].Transactions on Information Forensics and Security,2014,9(12):2170-2179. |
[1] | XU Maolong, JIANG Gaoxia, WANG Wenjian. Label Noise Filtering Framework Based on Outlier Detection [J]. Computer Science, 2024, 51(2): 87-99. |
[2] | JIANG Gaoxia, QIN Pei, WANG Wenjian. Noise Estimation and Filtering Methods with Limit Distance [J]. Computer Science, 2023, 50(6): 151-158. |
[3] | MA Jiye, ZHU Guosheng, WEI Cao, ZENG Yuxuan. Noise Tolerant Algorithm for Network Traffic Classification Method [J]. Computer Science, 2023, 50(11A): 220800120-7. |
[4] | TENG Jun-yuan, GAO Meng, ZHENG Xiao-meng, JIANG Yun-song. Noise Tolerable Feature Selection Method for Software Defect Prediction [J]. Computer Science, 2021, 48(12): 131-139. |
[5] | ZENG Qing-tian, LIU Chen-zheng, NI Wei-jian, DUAN Hua. Combined Feature Extraction Method for Ordinal Regression [J]. Computer Science, 2019, 46(6): 69-74. |
|