Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 220800120-7.doi: 10.11896/jsjkx.220800120
• Network & Communication • Previous Articles Next Articles
MA Jiye, ZHU Guosheng, WEI Cao, ZENG Yuxuan
CLC Number:
[1]ERMAN J,MAHANTI A,ARLITT M.Qrp05-4:Internet traffic identification using machine learning[C]//IEEE Globecom 2006.IEEE,2006:1-6. [2]WANG Y,ZHOU H Y,FENG H,et al.A Network Traffic Classification Method Based on Deep Convolution Neural Network[J].Journal on Communications,2018,39(1):14-23. [3]DONG S,XIA Y,PENG T.Traffic identification model based on generative adversarial deep convolutional network[J].Annals of Telecommunications,2022,77(9/10):573-587. [4]XUE W L,YU J,GUO Z Q,et al.End-to-end encrypted traffic classification based on a feature fusion convolutional neural network[J].Computer Engineering and Application,2021,57(18):8. [5]TANAKA D,IKAMI D,YAMASAKI T,et al.Joint optimization framework for learning with noisy labels[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5552-5560. [6]ZHANG C,BENGIO S,HARDT M,et al.Understanding deep learning(still) requires rethinking generalization[J].Communications of the ACM,2021,64(3):107-115. [7]ARPIT D,JASTRZBSKI S,BALLAS N,et al.A closer look at memorization in deep networks[C]//International Conference on Machine Learning.PMLR,2017:233-242. [8]XIAO T,XIA T,YANG Y,et al.Learning from massive noisy labeled data for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:2691-2699. [9]ZHENG S,WU P,GOSWAMI A,et al.Error-bounded correction of noisy labels[C]//International Conference on Machine Learning.PMLR,2020:11447-11457. [10]HUANG J,QU L,JIA R,et al.O2u-net:A simple noisy labeldetection approach for deep neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3326-3334. [11]SHARMA K,DONMEZ P,LUO E,et al.Noiserank:Unsuper-vised label noise reduction with dependence models[C]//European Conference on Computer Vision.Cham:Springer,2020:737-753. [12]CHAROENPHAKDEE N,LEE J,SUGIYAMA M.On sym-metric losses for learning from corrupted labels[C]//International Conference on Machine Learning.PMLR,2019:961-970. [13]LI J,WONG Y,ZHAO Q,et al.Learning to learn from noisy labeled data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5051-5059. [14]ALGAN G,ULUSOY I.Meta soft label generation for noisy labels[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:7142-7148. [15]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [16]SIMONYAN K,ZISSERMAN A.Very deep convolutional net-works for large-scale image recognition[J].arXiv:1409.1556,2014. [17]NAIR V,HINTON G E.Rectified linear units improve re-stricted boltzmann machines[C]//ICML.2010. [18]WANG Y,MA X,CHEN Z,et al.Symmetric cross entropy for robust learning with noisy labels[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:322-330. [19]GAO S H,CHENG M M,ZHAO K,et al.Res2net:A newmulti-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,43(2):652-662. [20]LI W,CANINI M,MOORE A W,et al.Efficient applicationidentification and the temporal and spatial stability of classification schema[J].Computer Networks,2009,53(6):790-809. [21]WANG F Y.Machine Learning in Network Traffic Classification[D].Chengdu:University of Electronic Science and Technology of China,2023. |
[1] | ZHAO Mingmin, YANG Qiuhui, HONG Mei, CAI Chuang. Smart Contract Fuzzing Based on Deep Learning and Information Feedback [J]. Computer Science, 2023, 50(9): 117-122. |
[2] | LI Haiming, ZHU Zhiheng, LIU Lei, GUO Chenkai. Multi-task Graph-embedding Deep Prediction Model for Mobile App Rating Recommendation [J]. Computer Science, 2023, 50(9): 160-167. |
[3] | HUANG Hanqiang, XING Yunbing, SHEN Jianfei, FAN Feiyi. Sign Language Animation Splicing Model Based on LpTransformer Network [J]. Computer Science, 2023, 50(9): 184-191. |
[4] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[5] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[6] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[7] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
[8] | ZHOU Ziyi, XIONG Hailing. Image Captioning Optimization Strategy Based on Deep Learning [J]. Computer Science, 2023, 50(8): 99-110. |
[9] | ZHANG Xiao, DONG Hongbin. Lightweight Multi-view Stereo Integrating Coarse Cost Volume and Bilateral Grid [J]. Computer Science, 2023, 50(8): 125-132. |
[10] | WANG Yu, WANG Zuchao, PAN Rui. Survey of DGA Domain Name Detection Based on Character Feature [J]. Computer Science, 2023, 50(8): 251-259. |
[11] | LI Kun, GUO Wei, ZHANG Fan, DU Jiayu, YANG Meiyue. Adversarial Malware Generation Method Based on Genetic Algorithm [J]. Computer Science, 2023, 50(7): 325-331. |
[12] | WANG Mingxia, XIONG Yun. Disease Diagnosis Prediction Algorithm Based on Contrastive Learning [J]. Computer Science, 2023, 50(7): 46-52. |
[13] | SHEN Zhehui, WANG Kailai, KONG Xiangjie. Exploring Station Spatio-Temporal Mobility Pattern:A Short and Long-term Traffic Prediction Framework [J]. Computer Science, 2023, 50(7): 98-106. |
[14] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[15] | ZHOU Bo, JIANG Peifeng, DUAN Chang, LUO Yuetong. Study on Single Background Object Detection Oriented Improved-RetinaNet Model and Its Application [J]. Computer Science, 2023, 50(7): 137-142. |
|